【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于二、四象限內(nèi)的AB兩點,與x軸交于C點,點A的坐標(biāo)為(- 3,4),點B的坐標(biāo)為(6,n).

(1)求該反比例函數(shù)和一次函數(shù)的解析式;

(2)連接OB,求△AOB 的面積;

(3)在x軸上是否存在點P,使△APC是直角三角形. 若存在,求出點P的坐標(biāo);若不存在,請說明理由.

【答案】(1)反比例函數(shù)的解析式為y=﹣ ; 一次函數(shù)的解析式為y=﹣x+2; 2;(3)存在,滿足條件的P點坐標(biāo)為(﹣3,0)、(﹣,0).

【解析】試題分析:1)先把代入得到的值,從而確定反比例函數(shù)的解析式為;再利用反比例函數(shù)解析式確定B點坐標(biāo)為,然后運用待定系數(shù)法確定所求的一次函數(shù)的解析式為

即可求得.
3)過A點作軸于, x軸于,則點的坐標(biāo)為;再證明利用相似比計算出,所以點的坐標(biāo)為于是得到滿足條件的P點坐標(biāo).

試題解析:

代入,得

∴反比例函數(shù)的解析式為

代入,得

解得

分別代入

解得,

∴所求的一次函數(shù)的解析式為

2)當(dāng)時, 解得:

3)存在.

A點作軸于, x軸于,如圖,

點坐標(biāo)為

點的坐標(biāo)為

點的坐標(biāo)為

∴滿足條件的點坐標(biāo)為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,∠A=∠B90°,AB5cm,AD3cm,BC2cm,PAB上一點,若以P、AD為頂點的三角形與△PBC相似,則PA_____cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知的半徑為,,的兩條弦,,,則弦之間的距離是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是直經(jīng),D的中點,DEACAC的延長線于E,O的切線BFAD的延長線于點F

1)求證:DEO的切線.

2)試探究AEAD,AB三者之間的等量關(guān)系.

3)若DE=3,O的半徑為5,求BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,∠B30°,BC6,點DBC邊上一動點(不與B、C重合),過點DDEBCAB邊于點E,將∠B沿直線DE翻折,點B落在射線BC上的點F處,當(dāng)AEF為直角三角形時,BD的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A是反比例函數(shù)y 在第一象限圖象上一點,連接OA,過點AABx軸(點B在點A右側(cè)),連接OB,若OB平分∠AOX,且點B的坐標(biāo)是(8,4),則k的值是(  )

A.6B.8C.12D.16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,BDO的直徑,點A、CO上并位于BD的兩側(cè),∠ABC45°,連結(jié)CD、OA并延長交于點F,過點CO的切線交BD延長線于點E

1)求證:∠F=∠ECF

2)當(dāng)DF6,tanEBC,求AF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,將腰CD以D為中心逆時針旋轉(zhuǎn)90°至DE,連接AE、CE,△ADE的面積為3,則BC的長為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BD是菱形ABCD的對角線.

1)請用直尺和圓規(guī)作AB的垂直平分線EF,垂足為點E,交AD于點F;(不要求寫作法,保留作圖痕跡)

2)在(1)的條件下,連接BF,若∠CBD=75°,求∠DBF的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案