【題目】(1) 如圖1,在正方形ABCD中,點(diǎn)E,F分別在邊BC,CD上,AE,BF交于點(diǎn)O,AOF=90°.求證:BE=CF.

(2) 如圖2,在正方形ABCD中,點(diǎn)E,H,F,G分別在邊AB,BC,CD,DA上,EF,GH交于點(diǎn)O,FOH=90°, EF=4.求GH的長(zhǎng).

(3) 已知點(diǎn)E,H,F,G分別在矩形ABCD的邊AB,BC,CD,DA上,EF,GH交于點(diǎn)O,FOH=90°,EF=4. 直接寫出下列兩題的答案:

如圖3,矩形ABCD由2個(gè)全等的正方形組成,求GH的長(zhǎng);

如圖4,矩形ABCD由n個(gè)全等的正方形組成,求GH的長(zhǎng)(用n的代數(shù)式表示).

【答案】(1) 證明:如圖1,

四邊形ABCD為正方形,

AB=BC,∠ABC=∠BCD=90°,

∠EAB+∠AEB=90°.

∠EOB=∠AOF=90°,

∠FBC+∠AEB=90°, ∠EAB=∠FBC,

△ABE≌△BCF BE=CF………………3分

(2) 解:如圖2,過(guò)點(diǎn)A作AM//GH交BC于M,

過(guò)點(diǎn)B作BN//EF交CD于N,AM與BN交于點(diǎn)O/

則四邊形AMHG和四邊形BNFE均為平行四邊形,

EF=BN,GH=AM,

FOH=90°, AM//GH,EF//BN, NO/A=90°,

故由(1)得, △ABM≌△BCN, AM=BN,

GH=EF=4. ………………6分

(3) 8. 4n. ………………8分

【解析】1)關(guān)鍵是證出CBF=BAE,可利用同角的余角相等得出,從而結(jié)合已知條件,利用SAS可證ABE≌△BCF,于是BE=CF

2)過(guò)AAMGH,交BCM,過(guò)BBNEF,交CDN,AMBN交于點(diǎn)O′,利用平行四邊形的判定,可知四邊形AMHG和四邊形BNFE,那么AM=GH,BN=EF,由于EOH=90°,結(jié)合平行線的性質(zhì),可知AO′N=90°,那么此題就轉(zhuǎn)化成(1),求BCN≌△ABM即可;

3若是兩個(gè)正方形,則GH=2EF=8若是n個(gè)正方形,那么GH=n4=4n

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD內(nèi)有一點(diǎn)P滿足AP=AB,PB=PC,連接AC、PD.
求證:
(1)△APB≌△DPC;
(2)∠BAP=2∠PAC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABCD,ABE與∠CDE兩個(gè)角的角平分線相交于點(diǎn)F.

(1)如圖1,若∠E=80°,求∠BFD的度數(shù).

(2)如圖2,若∠ABM=ABF,CDM=CDF,試寫出∠M與∠E之間的數(shù)量關(guān)系并證明你的結(jié)論.

(3)若∠ABM=ABF,CDM=CDF,E=m°,請(qǐng)直接用含有n,m°的代數(shù)式表示出∠M.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,CD為⊙O的直徑,點(diǎn)B在⊙O上,連接BC、BD,過(guò)點(diǎn)B的切線AE與CD的延長(zhǎng)線交于點(diǎn)A,OE∥BD,交BC于點(diǎn)F,交AE于點(diǎn)E.

(1)求證:△BEF∽△DBC.;
(2)若⊙O的半徑為3,∠C=32°,求BE的長(zhǎng).(精確到0.01)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】仔細(xì)閱讀下面例題,解答問(wèn)題

例題:已知二次三項(xiàng)式x24x+m有一個(gè)因式是(x+3),求另一個(gè)因式以及m的值.

解:設(shè)另一個(gè)因式為(x+n),得x24x+m=(x+3)(x+n),

x24x+mx2+n+3x+3n

解得:n=﹣7,m=﹣21

∴另一個(gè)因式為(x7),m的值為﹣21

問(wèn)題:

1)若二次三項(xiàng)式x25x+6可分解為(x2)(x+a),則a   ;

2)若二次三項(xiàng)式2x2+bx5可分解為(2x1)(x+5),則b   ;

3)仿照以上方法解答下面問(wèn)題:若二次三項(xiàng)式2x2+3xk有一個(gè)因式是(2x5),求另一個(gè)因式以及k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下圖是A.B兩所學(xué)校藝術(shù)節(jié)期間收到的各類藝術(shù)作品情況的統(tǒng)計(jì)圖:

A學(xué)校 B學(xué)校

1從圖中你能否看出哪所學(xué)校收到的水粉畫作品的數(shù)量多?為什么?

2已知A學(xué)校收到的剪紙作品比B學(xué)校的多20件,收到的書法作品比B學(xué)校的少100件,請(qǐng)問(wèn)這兩所學(xué)校收到藝木作品的總數(shù)分別是多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,A(a,0),C(b,2),且滿足,過(guò)CCB⊥x軸于B,

(1)求ab的值;

(2)在y軸上是否存在點(diǎn)P,使得△ABC和△OCP的面積相等,求出P點(diǎn)坐標(biāo);

(3)若過(guò)BBD∥ACy軸于D,且AE,DE分別平分∠CAB,∠ODB,如圖2,

①求:∠CAB+∠ODB的度數(shù);

②求:∠AED的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AE、BF、DC是直線,B在直線AC上,E在直線DF上,∠1=∠2,∠A=∠F.

求證:∠C=∠D.

證明:因?yàn)椤?/span>1=∠2(已知),∠1=∠3( )

得∠2=∠3( )

所以AE//_______( )

得∠4=∠F( )

因?yàn)?/span>__________(已知)

得∠4=∠A

所以______//_______( )

所以∠C=∠D( )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料: 小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號(hào)的式子可以寫成另一個(gè)式子的平方,如:,善于思考的小明進(jìn)行了以下探索:

設(shè)(其中均為整數(shù)),則有

.這樣小明就找到了一種把部分的式子化為平方式的方法.

請(qǐng)你仿照小明的方法探索并解決下列問(wèn)題:

(1)當(dāng)均為正整數(shù)時(shí),若,用含m、n的式子分別表示,得    ,   

(2)利用所探索的結(jié)論,找一組正整數(shù),填空:    =(      )2;

(3)若,且均為正整數(shù),求的值.

【答案】(1);;(2)4,2,1,1(答案不唯一);(3)=713

【解析】分析:(1)由a+b=(m+n)2,展開(kāi)比較系數(shù)可得答案;

(2)取m=1,n=1,可得ab的值,可得答案;

(3)由題意得mn的方程,解方程可得mn,可得a值.

詳解:(1)∵a+b=(m+n)2,

∴a+b=m2+3n2+2mn

∴a=m2+3n2,b=2mn.

故答案為:m2+3n2,2mn.

(2)設(shè)m=1,n=1,

∴a=m2+3n2=4,b=2mn=2.

故答案為4、2、1、1.

(3)由題意,得:

a=m2+3n2,b=2mn

∵4=2mn,且m、n為正整數(shù),

∴m=2,n=1或者m=1,n=2,

∴a=22+3×12=7,或a=12+3×22=13.

點(diǎn)睛:本題主要考查二次根式的混合運(yùn)算,完全平方公式,解題的關(guān)鍵在于熟練運(yùn)算完全平方公式和二次根式的運(yùn)算法則.

型】解答
結(jié)束】
28

【題目】如圖1,已知點(diǎn)A(a,0),B(0,b),且a、b滿足,

□ABCD的邊ADy軸交于點(diǎn)E,且EAD中點(diǎn),雙曲線經(jīng)過(guò)C、D兩點(diǎn).

(1)若點(diǎn)D點(diǎn)縱坐標(biāo)為t,則C點(diǎn)縱坐標(biāo)為 (含t的代數(shù)式表示),k的值為 ;

(2)點(diǎn)P在雙曲線上,點(diǎn)Qy軸上,若以點(diǎn)A、B、P、Q為頂點(diǎn)的四邊形是平行四邊形,試求滿足要求的所有點(diǎn)P、Q的坐標(biāo);

(3)以線段AB為對(duì)角線作正方形AFBH(如圖3),點(diǎn)T是邊AF上一動(dòng)點(diǎn),MHT的中點(diǎn),MNHT,交ABN,連接FN,當(dāng)TAF上運(yùn)動(dòng)時(shí),試判斷∠ATH與∠AFN之間的數(shù)量關(guān)系,并說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案