已知,如圖,正方形ABCD的邊長(zhǎng)是8,M在DC上,且DM=2,N是AC邊上的一動(dòng)點(diǎn),則DN+MN的最小值是______.
∵正方形是軸對(duì)稱圖形,點(diǎn)B與點(diǎn)D是關(guān)于直線AC為對(duì)稱軸的對(duì)稱點(diǎn),
∴連接BNBD,則直線AC即為BD的垂直平分線,
∴BN=ND∴DN+MN=BN+MN連接BM交AC于點(diǎn)P,
∵點(diǎn) N為AC上的動(dòng)點(diǎn),
由三角形兩邊和大于第三邊,
知當(dāng)點(diǎn)N運(yùn)動(dòng)到點(diǎn)P時(shí),
BN+MN=BP+PM=BM,
BN+MN的最小值為BM的長(zhǎng)度,
∵四邊形ABCD為正方形,
∴BC=CD=8,CM=8-2=6,BCM=90°,
∴BM=
62+82
=10,
∴DN+MN的最小值是10.
故答案為10.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

給出定義,若一個(gè)四邊形中存在相鄰兩邊的平方和等于一條對(duì)角線的平方,則稱該四邊形為勾股四邊形.
(1)在你學(xué)過(guò)的特殊四邊形中,寫(xiě)出兩種勾股四邊形的名稱;
(2)如圖,將△ABC繞頂點(diǎn)B按順時(shí)針?lè)较蛐D(zhuǎn)60°得到△DBE,連接AD,DC,CE,已知∠DCB=30°.
①求證:△BCE是等邊三角形;
②求證:DC2+BC2=AC2,即四邊形ABCD是勾股四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在北大、清華、復(fù)旦和浙大的校標(biāo)LOGO中,軸對(duì)稱圖形的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,是小華在鏡中看到身后墻上的鐘表,你認(rèn)為實(shí)際時(shí)間是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

拿一張長(zhǎng)方形紙片,按圖中所示的方法折疊一角,得到折痕EF,如果∠DFE=36°,則∠DFA=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在邊長(zhǎng)為1的小正方形組成的正方形網(wǎng)格中建立如圖所示的平面直角坐標(biāo)系,已知格點(diǎn)三角形ABC(三角形的三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)上).
(1)畫(huà)出△ABC關(guān)于y軸對(duì)稱的△A1B1C1;
(2)在y軸上找D點(diǎn),使BD+CD最。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,點(diǎn)D是AB邊上的中點(diǎn),將△ABC沿過(guò)點(diǎn)D的直線折疊,使點(diǎn)A落在邊BC上點(diǎn)F處,如果∠B=55°,則∠BDF=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖①是3×3正方形方格,現(xiàn)要將其中兩個(gè)小方格涂黑,并且使得涂黑后的整個(gè)圖案是軸對(duì)稱圖形(約定:繞正方形ABCD的中心旋轉(zhuǎn)能重合的圖案視為同一種,如圖②中設(shè)計(jì)的四幅圖只算一種圖案),那么不同的圖案共有( 。
A.4種B.5種C.6種D.7種

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

△ABC在平面直角坐標(biāo)系中的位置如圖所示.
(1)作出與△ABC關(guān)于x軸對(duì)稱的△A1B1C1
(2)寫(xiě)出點(diǎn)A1、B1、C1的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案