如圖,△ABC中,D是AB上的點(diǎn),以下條件中不能判定△ACD∽△ABC的是( )

A.∠ACD=∠B
B.∠ADC=∠ACB
C.AC2=AD•AB
D.AD:AC=CD:BC
【答案】分析:因△ACD和△ABC已有一公共角,則再有一角對應(yīng)相等,或公共角的兩邊對應(yīng)相等,則△ACD∽△ABC.
解答:解:因△ACD和△ABC已有一公共角,要使△ACD∽△ABC,
則需再有一角對應(yīng)相等,如∠ACD=∠B,∠ADC=∠ACB,故A,B正確;
或公共角的兩邊對應(yīng)相等,如AD:AC=AC:AB,即AC2=AD•AB,故C正確,D錯(cuò)誤.
故選D.
點(diǎn)評:相似三角形的判定:
(1)兩角對應(yīng)相等,兩三角形相似;
(2)兩邊對應(yīng)成比例且夾角相等,兩三角形相似;
(3)三邊對應(yīng)成比例,兩三角形相似;
(4)如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個(gè)直角三角形相似.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、已知:如圖,△ABC中,點(diǎn)D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點(diǎn)在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點(diǎn)D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點(diǎn)E,則AE與BC有什么位置關(guān)系,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案