(2006•無錫)已知⊙O1和⊙O2的半徑分別為2和5,圓心距OlO2=3,則這兩圓的位置關(guān)系是( )
A.相離
B.外切
C.相交
D.內(nèi)切
【答案】分析:根據(jù)圓心距和兩圓半徑的之間關(guān)系可得出兩圓之間的位置關(guān)系.
解答:解:∵5-2=3,
∴根據(jù)圓心距與半徑之間的數(shù)量關(guān)系可知⊙O1與⊙O2的位置關(guān)系是內(nèi)切.
故選D.
點評:本題考查了由數(shù)量關(guān)系來判斷兩圓位置關(guān)系的方法.設(shè)兩圓的半徑分別為R和r,且R≥r,圓心距為P:外離P>R+r;外切P=R+r;相交R-r<P<R+r;內(nèi)切P=R-r;內(nèi)含P<R-r.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2006•無錫)已知拋物線y=ax2+bx+c(a>0)的頂點是C(0,1),直線l:y=-ax+3與這條拋物線交于P、Q兩點,與x軸、y軸分別交于點M和N.
(1)設(shè)點P到x軸的距離為2,試求直線l的函數(shù)關(guān)系式;
(2)若線段MP與PN的長度之比為3:1,試求拋物線的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年江蘇省無錫市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•無錫)已知拋物線y=ax2+bx+c(a>0)的頂點是C(0,1),直線l:y=-ax+3與這條拋物線交于P、Q兩點,與x軸、y軸分別交于點M和N.
(1)設(shè)點P到x軸的距離為2,試求直線l的函數(shù)關(guān)系式;
(2)若線段MP與PN的長度之比為3:1,試求拋物線的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年江蘇省無錫市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•無錫)已知:如圖,平行四邊形ABCD中,∠BCD的平分線交AB于E,交DA的延長線于F.
求證:AE=AF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年江蘇省無錫市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2006•無錫)已知∠AOB=30°,C是射線OB上的一點,且OC=4.若以C為圓心,r為半徑的圓與射線OA有兩個不同的交點,則r的取值范圍是   

查看答案和解析>>

同步練習(xí)冊答案