【題目】拋物線與軸交于,兩點,與軸交于點,已知點.
(1)若,求,滿足的關系式;
(2)直線與拋物線交于,兩點,拋物線的對稱軸為直線,且.
①求拋物線的解析式(各項系數(shù)用含的式子表示);
②求線段長度的取值范圍.
【答案】(1);(2)① ②或
【解析】
(1)將點A的坐標和c=a代入到拋物線的解析中,化簡即可得出a,b之間的關系式.
(2) ①由拋物線的對稱軸為x=1得到a,b之間的關系,根據(jù)點A拋物線上,可求出a,c之間的關系;
②首先用含有a的式子表示出CD的長,根據(jù)正切值得范圍求出a的取值范圍,再結合a的取值范圍求出CD的取值范圍.
解:(1)若,拋物線解析式化為.
點在拋物線上,
,
.
(2)①拋物線的對稱軸為直線,
,
.
點在拋物線上,
,
.
拋物線解析式化為.
②直線經(jīng)過點,且點,
,
直線化為.
由,解得,.
即.
點.
由勾股定理得
依題意可知,點在點右側(cè),
且.
由拋物線對稱性可得點
,
.
當時,;
當時,.
當時,由反比例函數(shù)性質(zhì)得,;
當時,由反比例函數(shù)性質(zhì)得,;
綜上所述:或.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,圓桌正上方的燈泡O發(fā)出的光線照射桌面后,在地面上形成圓形陰影.已知桌面的直徑為1.2m,桌面距離地面1m,若燈泡O距離地面3m,則地面上陰影部分的面積為( 。
A.0.36πm2B.0.81πm2C.1.44πm2D.3.24πm2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(方法回顧)
課本研究三角形中位線性質(zhì)的方法
已知:如圖①, 已知中,,分別是,兩邊中點.
求證:,
證明:延長至點,使, 連按.可證:( )
由此得到四邊形為平行四邊形, 進而得到求證結論
(1)請根據(jù)以上證明過程,解答下列兩個問題:
①在圖①中作出證明中所描述的輔助線(請用鉛筆作輔助線);
②在證明的括號中填寫理由(請在,,,中選擇) .
(問題拓展)
(2)如圖②,在等邊中, 點是射線上一動點(點在點的右側(cè)),把線段繞點逆時針旋轉(zhuǎn)得到線段,點是線段的中點,連接、.
①請你判斷線段與的數(shù)量關系,并給出證明;
②若,求線段長度的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)的圖像與x軸交于A、B兩點(點A在點B左側(cè)),與y軸交于點C.
(1)求線段BC的長;
(2)當0≤y≤3時,請直接寫出x的范圍;
(3)點P是拋物線上位于第一象限的一個動點,連接CP,當∠BCP=90o時,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線(為常數(shù),)與軸交于,兩點,與軸交于點.設該拋物線的頂點為,其對稱軸與軸的交點為.
(1)求該拋物線的解析式;
(2)為線段(含端點)上一點,為軸上一點,且.
①求的取值范圍;
②當取最大值時,將線段向上平移個單位長度,使得線段與拋物線有兩個交點,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線經(jīng)過原點和點,頂點為,拋物線與拋物線關于原點對稱.
(1)求拋物線的函數(shù)表達式及點的坐標;
(2)已知點、在拋物線上的對應點分別為、,的對稱軸交軸于點,則拋物線的對稱軸上是否存在點,使得以、、為頂點的三角形與相似?若存在,請求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知中,,(如圖).以線段為邊向外作等邊三角形,點是線段的中點,連接并延長交線段于點.
(1)求證:四邊形為平行四邊形;
(2)連接,交于點.
①若,求的長;
②作,垂足為,求證:.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:兩個相似等腰三角形,如果它們的底角有一個公共的頂點,那么把這兩個三角形稱為“關聯(lián)等腰三角形”.如圖,在與中, ,且所以稱與為“關聯(lián)等腰三角形”,設它們的頂角為,連接,則稱會為“關聯(lián)比".
下面是小穎探究“關聯(lián)比”與α之間的關系的思維過程,請閱讀后,解答下列問題:
[特例感知]
當與為“關聯(lián)等腰三角形”,且時,
①在圖1中,若點落在上,則“關聯(lián)比”=
②在圖2中,探究與的關系,并求出“關聯(lián)比”的值.
[類比探究]
如圖3,
①當與為“關聯(lián)等腰三角形”,且時,“關聯(lián)比”=
②猜想:當與為“關聯(lián)等腰三角形”,且時,“關聯(lián)比”= (直接寫出結果,用含的式子表示)
[遷移運用]
如圖4, 與為“關聯(lián)等腰三角形”.若點為邊上一點,且,點為上一動點,求點自點運動至點時,點所經(jīng)過的路徑長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】書法是我國的文化瑰寶,研習書法能培養(yǎng)高雅的品格某校為加強書法教學,了解學生現(xiàn)有的書寫能力,隨機抽取了部分學生進行測試,測試結果分為優(yōu)秀、良好、及格、不及格四個等級,分別用,,,表示,并將測試結果繪制成如下兩幅不完整的統(tǒng)計圖.
書寫能力等級測試條形統(tǒng)計圖:
書寫能力等級測試扇形統(tǒng)計圖:
請根據(jù)統(tǒng)計圖中的信息解答以下問題:
(1)本次抽取的學生共有______人,扇形統(tǒng)計圖中所對應扇形的圓心角是_______;
(2)把條形統(tǒng)計圖補充完整;
(3)依次將優(yōu)秀、良好、及格、不及格記為分、分、分、分,則抽取的這部分學生書寫成績的眾數(shù)是_______,中位數(shù)是_______,平均數(shù)是________;
(4)若該校共有學生人,請估計一下,書寫能力等級達到優(yōu)秀的學生大約有多少人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com