【題目】如圖,在四邊形ABCD中,AB∥CD,2AB=2BC=CD=10,tanB=,則AD=______.
【答案】3
【解析】
過A作AF⊥CD于F,過C作CE⊥AB于E,根據(jù)矩形的性質(zhì)得出AF=CE,AE=CF,求出AF和DF長,再根據(jù)勾股定理求出即可.
∵2AB=2BC=CD=10,
∴AB=BC=5,
過A作AF⊥CD于F,過C作CE⊥AB于E,
則∠AEC=∠AFD=∠BEC=90°,AF∥CE,
∵AB∥CD,
∴四邊形AECF是矩形,
∴AE=CF,AF=CE,
∵在Rt△BEC中,tanB=,
又∵BC=5,
CE=3,BE=4,
∴AE=CF=5-4=1,AF=CE=3,
∵CD=10,
∴DF=10-1=9,
在Rt△AFD中,由勾股定理得:AD==3,
故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】問題:將菱形的面積五等分.小紅發(fā)現(xiàn)只要將菱形周長五等分,再將各分點與菱形的對角線交點連接即可解決問題.如圖,點O是菱形ABCD的對角線交點,AB=5,下面是小紅將菱形ABCD面積五等分的操作與證明思路,請補充完整.
(1)在AB邊上取點E,使AE=4,連接OA,OE;
(2)在BC邊上取點F,使BF=______,連接OF;
(3)在CD邊上取點G,使CG=______,連接OG;
(4)在DA邊上取點H,使DH=______,連接OH.由于AE=______+______=______+______=______+______=______.可證S△AOE=S四邊形EOFB=S四邊形FOGC=S四邊形GOHD=S△HOA.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀理解:
如圖,在平面直角坐標系xOy中,點A與點B的坐標分別是,.
對于坐標平面內(nèi)的一點P,給出如下定義:如果,則稱點P為線段AB的“等角點”顯然,線段AB的“等角點”有無數(shù)個,且A、B、P三點共圓.
設A、B、P三點所在圓的圓心為C,直接寫出點C的坐標和的半徑;
軸正半軸上是否有線段AB的“等角點”?如果有,求出“等角點”的坐標;如果沒有,請說明理由;
當點P在y軸正半軸上運動時,是否有最大值?如果有,說明此時最大的理由,并求出點P的坐標;如果沒有請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=x2+bx﹣3(b是常數(shù))經(jīng)過點A(﹣1,0),(1)求拋物線的解析式_____.(2)P(m,t)為拋物線上的一個動點,P關(guān)于原點的對稱點為P′,當點P′落在第二象限內(nèi),P′A2取得最小值時,求m的值_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某電視臺攝制組乘船往返于A碼頭和B碼頭進行拍攝,在A、B兩碼頭間設置拍攝中心C.在往返過程中,假設船在A、B、C處均不停留,船離開B碼頭的距離s(千米)與航行的時間t(小時)之間的函數(shù)關(guān)系式如圖所示.根據(jù)圖象信息,解答下列問題:
(1)求船從B碼頭返回A碼頭時的速度及返回時s關(guān)于t的函數(shù)表達式.
(2)求水流的速度.
(3)若拍攝中心C設在離A碼頭12千米處,攝制組在拍攝中心分兩組拍攝,其中一組乘橡皮艇漂流到B碼頭處,另一組同時乘船到達A碼頭后馬上返回,求兩攝制組相遇時離拍攝中心C的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,AB=CD,∠B=60°,AD=2,BC=8,點P從點B出發(fā)沿折線BA﹣AD﹣DC勻速運動,同時,點Q從點B出發(fā)沿折線BC﹣CD勻速運動,點P與點Q的速度相同,當二者相遇時,運動停止,設點P運動的路程為x,△BPQ的面積為y,則y關(guān)于x的函數(shù)圖象大致是( 。
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了豐富校園文化生活,某校計劃在午間校園廣播臺播放“百家講壇”的部分內(nèi)容為了了解學生的喜好,抽取若干名學生進行問卷調(diào)查(每人只選一項內(nèi)容),整理調(diào)查結(jié)果,繪制統(tǒng)計圖如下:
請根據(jù)統(tǒng)計圖提供的信息回答以下問題:
(1)這一調(diào)查屬于_______(選填“抽樣調(diào)查”或“普查”),抽取的學生數(shù)為_____名;
(2)估計喜歡收聽易中天《品三國》的學生約占全校學生的____%(精確到小數(shù)點后一位);
(3)已知該校女學生共有1800名,則該校喜歡收聽劉心武評《紅樓夢》的女學生大約有多少名?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】AB為⊙O直徑,C為⊙O上的一點,過點C的切線與AB的延長線相交于點D,CA=CD.
(1)連接BC,求證:BC=OB;
(2)E是中點,連接CE,BE,若BE=2,求CE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖,在△ABC中,∠B=45°,點D是BC邊的中點,DE⊥BC于點D,交AB于點E,連接CE.
(1)求∠AEC的度數(shù);
(2)請你判斷AE、BE、AC三條線段之間的等量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com