【題目】如圖,AB為⊙O的直徑,點(diǎn)C、點(diǎn)D為⊙O上異于A、B的兩點(diǎn),連接CD,過(guò)點(diǎn)C作CE⊥DB,交DB的延長(zhǎng)線(xiàn)于點(diǎn)E,連接AC、AD、BC,若∠ABD=2∠BDC.
(1)求證:CE是⊙0的切線(xiàn)
(2)求證:△ABC△CBE
(3)若⊙O的半徑為5,tan∠BDC=,求BE的長(zhǎng).
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3)2
【解析】
(1)連接OC,可證明OC∥DE,由于CE⊥DB,∠CED=90°,所以∠OCE=90°,OC⊥CE,根據(jù)切線(xiàn)的判定即可求出答案;
(2)由AB是⊙O的直徑,可得,可得,再證∠ECB=∠CAB,即可得出結(jié)論;
(3)連接BC,由于∠BDC=∠BAC,所以,設(shè)BC=x,AC=2x,所以,列出方程即可求出x的值,利用△ABC△CBE可求出BE的長(zhǎng)度.
(1)證明:連接
∵
∴
∴
∵,
∴
∴
∴
∵,
∴
∴,
∴
∵OC為的半徑
∴是的切線(xiàn)
(2)連接
∵AB是⊙O的直徑
∴
∴
∵∠ECO=∠BCA=90°
∴∠ECB+∠BCO=∠OCA+∠BCO
∴∠ECB=∠OCA
∵
∴∠ECB=∠CAB
∴△ABC△CBE
(3)∵,
∴
∵是的直徑
∴
∴
設(shè),
∴
∵的半徑為5
∴
∴
∴
∵△ABC△CBE
∴
∴
∴BE=2
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BD是△ABC的角平分線(xiàn),過(guò)點(diǎn)D作DE∥BC交AB于點(diǎn)E,DF∥AB交BC于點(diǎn)F.
⑴求證:四邊形BEDF為菱形;
⑵如果∠A=100°,∠C=30°,求∠BDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在陽(yáng)光下,小玲同學(xué)測(cè)得一根長(zhǎng)為1米的垂直地面的竹竿的影長(zhǎng)為0.6米,同時(shí)小強(qiáng)同學(xué)測(cè)量樹(shù)的高度時(shí),發(fā)現(xiàn)樹(shù)的影子有一部分0.2米落在教學(xué)樓的第一級(jí)臺(tái)階上,落在地面上的影長(zhǎng)為4.42米,每級(jí)臺(tái)階高為0.3米.小玲說(shuō):“要是沒(méi)有臺(tái)階遮擋的話(huà),樹(shù)的影子長(zhǎng)度應(yīng)該是4.62米”;小強(qiáng)說(shuō):“要是沒(méi)有臺(tái)階遮擋的話(huà),樹(shù)的影子長(zhǎng)度肯定比4.62米要長(zhǎng)”.
(1)你認(rèn)為小玲和小強(qiáng)的說(shuō)法對(duì)嗎?
(2)請(qǐng)根據(jù)小玲和小強(qiáng)的測(cè)量數(shù)據(jù)計(jì)算樹(shù)的高度;
(3)要是沒(méi)有臺(tái)階遮擋的話(huà),樹(shù)的影子長(zhǎng)度是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,反比例函數(shù)y= (x>0)過(guò)點(diǎn)A(3,4),直線(xiàn)AC與x軸交于點(diǎn)C(6,0),過(guò)點(diǎn)C作x軸的垂線(xiàn)BC交反比例函數(shù)圖象于點(diǎn)B.
(1)填空:反比例函數(shù)的解析式為____________________,直線(xiàn)AC的解析式為____________________,B點(diǎn)的坐標(biāo)是________.
(2)在平面內(nèi)有點(diǎn)D,使得以A,B,C,D四點(diǎn)為項(xiàng)點(diǎn)的邊形為平行四邊形.
①在圖中用直尺和2B鉛筆畫(huà)出所有符合條件的平行四邊形;
②根據(jù)所畫(huà)形,請(qǐng)直接寫(xiě)出符合條件的所有點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1是某品牌臺(tái)燈豎直擺放在水平桌面上的側(cè)面示意圖,其中為桌面(臺(tái)燈底座的厚度忽略不計(jì)),臺(tái)燈支架與燈管的長(zhǎng)度都為,且?jiàn)A角為(即),若保持該夾角不變,當(dāng)支架繞點(diǎn)順時(shí)針旋轉(zhuǎn)時(shí),支架與燈管落在位置(如圖2所示),則燈管末梢的高度會(huì)降低_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,函數(shù)y=x(x≥0)的圖象與反比例函數(shù)y=的圖象交于點(diǎn)A,若點(diǎn)A繞點(diǎn)B(,0)順時(shí)針旋轉(zhuǎn)90°后,得到的點(diǎn)A'仍在y=的圖象上,則點(diǎn)A的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線(xiàn)表達(dá)式C:, 已知點(diǎn)A(0,2),點(diǎn)P是拋物線(xiàn)上一點(diǎn),若Rt△AOP有一個(gè)銳角正切值為,則點(diǎn)P的坐標(biāo)_________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)的圖象過(guò)點(diǎn)O(0,0).A(8,4),與x軸交于另一點(diǎn)B,且對(duì)稱(chēng)軸是直線(xiàn)x=3.
(1)求該二次函數(shù)的解析式;
(2)若M是OB上的一點(diǎn),作MN∥AB交OA于N,當(dāng)△ANM面積最大時(shí),求M的坐標(biāo);
(3)P是x軸上的點(diǎn),過(guò)P作PQ⊥x軸與拋物線(xiàn)交于Q.過(guò)A作AC⊥x軸于C,當(dāng)以O,P,Q為頂點(diǎn)的三角形與以O,A,C為頂點(diǎn)的三角形相似時(shí),求P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班數(shù)學(xué)興趣小組對(duì)函數(shù)的圖象和性質(zhì)將進(jìn)行了探究,探究過(guò)程如下,請(qǐng)補(bǔ)充完整.
(1)自變量的取值范圍是除0外的全體實(shí)數(shù),與的幾組對(duì)應(yīng)值列表如下:
… | 1 | 2 | 3 | 6 | … | |||||
… | 1 | 2 | 6 | 1 | 3 | 2 | 1 | … |
其中,_________.
(2)根據(jù)上表數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點(diǎn)并畫(huà)出了函數(shù)圖象的一部分,請(qǐng)畫(huà)出該函數(shù)圖象的另一部分.
(3)觀(guān)察函數(shù)圖象,寫(xiě)出一條函數(shù)性質(zhì).
(4)進(jìn)一步探究函數(shù)圖象發(fā)現(xiàn):
①函數(shù)圖象與軸交點(diǎn)情況是________,所以對(duì)應(yīng)方程的實(shí)數(shù)根的情況是________.
②方程有_______個(gè)實(shí)效根;
③關(guān)于的方程有2個(gè)實(shí)數(shù)根,的取值范圍是________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com