如圖,關(guān)于x的二次函數(shù)y=x2-2mx-m-2的圖象與x軸交于A(x1,0)、B(x2,0)兩點(x1<0<x2),與y軸交于C點
(1)當m為何值時,AC=BC;
(2)當∠BAC=∠BCO時,求這個二次函數(shù)的表達式.
(1)要使AC=BC,則該拋物線的對稱軸應(yīng)是y軸,
則有-
-2m
2×1
=0
,即m=0,
∴當m=0時,AC=BC.

(2)當∠BAC=∠BCO,有Rt△AOCRt△COB,則
OC
OB
=
OA
OC

即OC2=OA•OB,
由題意,知OC=|-m-2|,OA=|x1|=-x1,OB=|x2|=x2
由根與系數(shù)關(guān)系,得x1x2=-m-2,
∴OA•OB=-x1x2=m+2
則|-m-2|2=m+2,
解,得m=-2或m=-1.
當m=-2時,二次函數(shù)為y=x2+4x,此時x1=-4,x2=0,不合題意,舍去.
當m=-1時,二次函數(shù)為y=x2+2x-1,此時x1=-1-
2
,x2=-1+
2
,符合題意.
∴當∠BAC=∠BCO時,這個二次函數(shù)的表達式為y=x2+2x-1.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=ax2經(jīng)過點(1,5),當y=15時,求x的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線y=ax2+bx+c與x軸交于點A、B,與y軸交于點C,OC=4,AO=2OC,且拋物線對稱軸為直線x=-3.
(1)求該拋物線的函數(shù)表達式;
(2)己知矩形DEFG的一條邊DE在線段AB上,頂點F、G分別在AC、BC上,設(shè)OD=m,矩形DEFG的面積為S,當矩形DEFG的面積S取最大值時,連接DF并延長至點M,使FM=
2
5
DF
,求出此時點M的坐標;
(3)若點Q是拋物線上一點,且橫坐標為-4,點P是y軸上一點,是否存在這樣的點P,使得△BPQ是直角三角形?如果存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知直線y=
1
3
x+1與x軸交于點A,與y軸交于點B,將△AOB繞點O順時針旋轉(zhuǎn)90°后得到△COD.
(1)點C的坐標是______線段AD的長等于______;
(2)點M在CD上,且CM=OM,拋物線y=x2+bx+c經(jīng)過點C,M,求拋物線的解析式;
(3)如果點E在y軸上,且位于點C的下方,點F在直線AC上,那么在(2)中的拋物線上是否存在點P,使得以C,E,F(xiàn),P為頂點的四邊形是菱形?若存在,請求出該菱形的周長l;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,以邊長為1的正方形ABCO的兩邊OA、OC所在直線為軸建立坐標系,點O為原點.
(1)求以A為頂點,且經(jīng)過點C的拋物線解析式;
(2)求(1)中的拋物線與對角線OB交于點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

拋物線y=x2+bx+c經(jīng)過點(0,3)和(-1,0),那么拋物線的解析式是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù)的圖象經(jīng)過點A(1,0)且與直線y=
3
4
x+3相交于B、C兩點,點B在x軸上,點C在y軸上.
(1)求二次函數(shù)的解析式及函數(shù)的頂點坐標
(2)如果P(x,y)是線段BC上的動點,O為坐標原點,試求△PAB的面積S與x之間的函數(shù)關(guān)系式,并寫出自變量取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某養(yǎng)殖專業(yè)戶計劃利用房屋的一面墻修造如圖所示的長方體水池,培育不同品種的魚苗.他已準備可以修高為3m.長30m的水池墻的材料,圖中EF與房屋的墻壁互相垂直,設(shè)AD的長為xm.(不考慮水池墻的厚度)
(1)請直接寫出AB的長(用含有x的代數(shù)式表示);
(2)試求水池的總?cè)莘eV與x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(3)如果房屋的墻壁可利用的長度為10.5m,請利用函數(shù)圖象與性質(zhì)求V的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知:拋物線y=a(x-2)2+b(ab<0)的頂點為A,與x軸的交點為B,C
(1)拋物線對稱軸方程為______;
(2)若D點為拋物線對稱軸上一點,若以A,B,C,D為頂點的四邊形是正方形,則a,b滿足的關(guān)系式是______.

查看答案和解析>>

同步練習冊答案