觀察
1
1×2
+
1
2×3
+
1
3×4
=(
1
1
-
1
2
)+(
1
2
-
1
3
)+(
1
3
-
1
4
)=1-
1
4
=
3
4
,依照上述方法計算
1
1×2
+
1
2×3
+
1
3×4
+…+
1
8×9
+
1
9×10
=
 
分析:觀察
1
1×2
+
1
2×3
+
1
3×4
=(
1
1
-
1
2
)+(
1
2
-
1
3
)+(
1
3
-
1
4
)=1-
1
4
=
3
4
后,發(fā)現(xiàn)式中只留下了1-
1
4
,因此,要計算的代數(shù)式等于1-
1
10
解答:解:由題意得,原式=1-
1
10
=
9
10
點評:要認真分析規(guī)律,中間的數(shù)被抵消了.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

先觀察下列等式,然后用你發(fā)現(xiàn)的規(guī)律解答下列問題.
1
1×2
=1-
1
2

1
2×3
=
1
2
-
1
3

1
3×4
=
1
3
-
1
4

┅┅
(1)計算
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+
1
5×6
=
 

(2)探究
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
=
 
;(用含有n的式子表示)
(3)若
1
1×3
+
1
3×5
+
1
5×7
+…+
1
(2n-1)(2n+1)
的值為
17
35
,求n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

觀察下列各式:
1
1×2
=1-
1
2
,
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
,
1
4×5
=
1
4
-
1
5
,…
請你把猜想到的規(guī)律用含正整數(shù)n的式子表示出來,
(1)猜想與總結(jié)
1
n(n+1)
=
 
(n≥1且為正整數(shù));
(2)利用以上規(guī)律計算
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+
+
1
99×100
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

觀察下列等式:
1
1×2
=1-
1
2
,
1
2×3
=
1
2
-
1
3
,
1
3×4
=
1
3
-
1
4
,將以上三個等式兩邊分別相加得:
1
1×2
+
1
2×3
+
1
3×4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4

(1)猜想并寫出:
1
n(n+1)
=
1
n
-
1
n+1
1
n
-
1
n+1
. 
1
1×2
+
1
2×3
+…+
1
2013×2014
=
2013
2014
2013
2014

(2)探究并計算:
1
2×4
+
1
4×6
+
1
6×8
+…+
1
2012×2014

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:莆田 題型:填空題

觀察
1
1×2
+
1
2×3
+
1
3×4
=(
1
1
-
1
2
)+(
1
2
-
1
3
)+(
1
3
-
1
4
)=1-
1
4
=
3
4
,依照上述方法計算
1
1×2
+
1
2×3
+
1
3×4
+…+
1
8×9
+
1
9×10
=______.

查看答案和解析>>

同步練習(xí)冊答案