已知,平面直角坐標(biāo)系上有A(a,0)、B(0,-b)、C(b,0)三點,且a≥b>0,拋物線y=(x-2)(x-m)-(n-2)(n-m).(m,n為常數(shù),且m+2≥2n>0),經(jīng)過點A和點C,頂點為P
(1)當(dāng)m,n滿足什么關(guān)系時,S△AOB最大;
(3)如圖,當(dāng)△ACP為直角三角形時,判斷以下命題是否正確:“直角三角形DEF的三個頂點都在這條拋物線上,且DFx軸,那么△ACP與△DEF斜邊上的高相等”,如果正確請予以證明,不正確請舉出反例.
(1)∵y=(x-2)(x-m)-(n-2)(n-m)=(x-n)(x+n-m-2),
又∵m+2≥2n,即m+2-n≥n,
∴點(m+2-n,0)在點(n,0)右邊.
又拋物線過A點和C點,
∴a=m+2-n,b=n,
∵S△AOB=
1
2
ab=
1
2
(m+2-n)n≤
1
2
[
1
2
(m+2-n)+n]2=
1
8
(m+2)2,
當(dāng)且僅當(dāng)m+2-n=n時取“=”,此時m+2=2n,
當(dāng)m+2=2n時,S△AOB最大;

(2)命題正確.
理由:∵當(dāng)△ACP是直角三角形時,AP⊥CP,且|AC|等于P點到x軸距離的2倍.
又∵拋物線y=(x-n)(x+n-m-2)=[x-
1
2
(m+2)]2-
1
4
(m+2)2+n(m+2-n),
∴頂點必然在x軸下方,
∴由 2[
1
4
(m+2)2-n(m+2-n)]=(m+2-n)-n,
化簡得:[(m+2)-2n][(m+2)-(2n+2)]=0,
顯然A、C不會是同一點,
∴m+2-n>n,即(m+2)-2n>0,
∴(m+2)-(2n+2)=0,
得:m=2n,
代回原方程有y=(x-n)(x-n-2),
∴點A(n+2,0),點C(n,0),點P(n+1,-1).
假設(shè)命題成立,
∵DEx軸,
∴點F為Rt△DEF的直角.
令D、E的縱坐標(biāo)均為y=b,則可求的兩點的坐標(biāo)分別為:D(n+1-
b+1
,b),E(n+1+
b+1
,b).
設(shè)點F坐標(biāo)為(x0,y0),
∵DF⊥EF,
∴有
y0-b
x0-(n+1-
b+1
)
y0-b
x0-(n+1+
b+1
)
=-1,
化簡得(x0-n-1)2+(y0-b)2=b+1,
又(x0,y0)滿足y0=(x0-n)(x0-n-2)=[(x0-n-1)+1][(x0-n-1)-1]=(x0-n-1)2-1,
聯(lián)立兩式消去x0化簡得:y02+(1-2b)y0+(b2-b)=0,
求得y0=b或b-1,舍去y0=b,故y0=b-1,
∴F到斜邊DE的距離為b-(b-1)=1,這與P到斜邊AC距離一樣.
綜合上述:命題是正確的.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=-
1
4
x2+x+3
與x軸相交于點A、B,與y軸相交于點C,頂點為點D,對稱軸l與直線BC相交于點E,與x軸相交于點F.
(1)求直線BC的解析式;
(2)設(shè)點P為該拋物線上的一個動點,以點P為圓心,r為半徑作⊙P
①當(dāng)點P運動到點D時,若⊙P與直線BC相交,求r的取值范圍;
②若r=
4
5
5
,是否存在點P使⊙P與直線BC相切?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.
提示:拋物線y=ax2+bx+x(a≠0)的頂點坐標(biāo)(-
b
2a
,
4ac-b2
4a
),對稱軸x=-
b
2a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,已知點A、B、C的坐標(biāo)分別為(-1,0),(5,0),(0,2).
(1)求過A、B、C三點的拋物線解析式;
(2)若點P從A點出發(fā),沿x軸正方向以每秒1個單位長度的速度向B點移動,連接PC并延長到點E,使CE=PC,將線段PE繞點P順時針旋轉(zhuǎn)90°得到線段PF,連接FB.若點P運動的時間為t秒,(0≤t≤6)設(shè)△PBF的面積為S;
①求S與t的函數(shù)關(guān)系式;
②當(dāng)t是多少時,△PBF的面積最大,最大面積是多少?
(3)點P在移動的過程中,△PBF能否成為直角三角形?若能,直接寫出點F的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,點O是坐標(biāo)原點,點P(m,-1)(m>0).連接OP,將線段OP繞點O按逆時針方向旋轉(zhuǎn)90°得到線段OM,且點M是拋物線y=ax2+bx+c的頂點.
(1)若m=1,拋物線y=ax2+bx+c經(jīng)過點(2,2),當(dāng)0≤x≤1時,求y的取值范圍;
(2)已知點A(1,0),若拋物線y=ax2+bx+c與y軸交于點B,直線AB與拋物線y=ax2+bx+c有且只有一個交點,請判斷△BOM的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,在平面直角坐標(biāo)系xOy中,矩形OABC的邊OA在y軸的正半軸上,OC在x軸的正半軸上,OA=2,OC=3.過原點O作∠AOC的平分線交AB于點D,連接DC,過點D作DE⊥DC,交OA于點E.
(1)求過點E、D、C的拋物線的解析式;
(2)將∠EDC繞點D按順時針方向旋轉(zhuǎn)后,角的一邊與y軸的正半軸交于點F,另一邊與線段OC交于點G.如果DF與(1)中的拋物線交于另一點M,點M的橫坐標(biāo)為
6
5
,那么EF=2GO是否成立?若成立,請給予證明;若不成立,請說明理由;
(3)對于(2)中的點G,在位于第一象限內(nèi)的該拋物線上是否存在點Q,使得直線GQ與AB的交點P與點C、G構(gòu)成的△PCG是等腰三角形?若存在,請求出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,EF是一面長18米的墻,用總長為32米的木柵欄(圖中的虛線)圍一個矩形場地,中間還要隔成三塊.設(shè)與墻頭垂直的邊AD長為x米,
(1)用含x的代數(shù)式表示AB的長為______米;
(2)若要圍成的矩形面積為60米2,求AB的長;
(3)當(dāng)x為何值時,矩形的面積S最大?是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線y=ax2+bx+c(經(jīng)過原點)與x軸相交于N點,直線y=kx+4與坐標(biāo)軸分別相交于A、D兩點,與拋物線相交于B(1,m)和C(2,2)兩點.
(1)求直線與拋物線的表達式;
(2)求證:C點是△AOD的外心;
(3)若(1)中的拋物線,在x軸上方的部分,有一動點P(x,y),設(shè)∠PON=α.當(dāng)sinα為何值時,△PON的面積有最大值?
(4)若P點保持(3)中運動路線,是否存在△PON,使得其面積等于△OCN面積的
9
16
?若存在,求出動點P的位置;若不存在,請說出理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,⊙O的半徑為2,C1是函數(shù)的y=
1
2
x2
的圖象,C2是函數(shù)的y=-
1
2
x2
的圖象,C3是函數(shù)的y=x的圖象,則陰影部分的面積是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某鎮(zhèn)地理環(huán)境偏僻,嚴(yán)重制約經(jīng)濟發(fā)展,豐富的花木產(chǎn)品只能在本地銷售.鎮(zhèn)政府對該花木產(chǎn)品每年固定投資x萬元,所獲利潤為P=-
1
50
(x-30)2+10
萬元.為了響應(yīng)我國西部大開發(fā)的宏偉決策,鎮(zhèn)政府在制定經(jīng)濟發(fā)展的10年規(guī)劃時,擬定開發(fā)花木產(chǎn)品,而開發(fā)前后可用于該項目投資的專項資金每年最多50萬元.若開發(fā)該產(chǎn)品,在前5年中,必須每年從專項資金中拿出25萬元投資修通一條公路;后5年公路修通時,花木產(chǎn)品除在本地銷售外,還可運往外地銷售,運往外地銷售的花木產(chǎn)品,每年固定投資x萬元可獲利潤Q=-
49
50
(50-x)2+
194
5
(50-x)+308
萬元.
(1)若不進行開發(fā),求10年所獲利潤的最大值是多少?
(2)若按此規(guī)劃進行開發(fā),求10年所獲利潤的最大值是多少?
(3)若按此規(guī)劃進行開發(fā)后,后5年所獲利潤共為2400萬元,那么當(dāng)本地銷售投資金額大于外地銷售投資金額時,每年用于本地銷售投資的金額約為多少萬元?(
13
≈3.606
,
55
≈7.416
,計算結(jié)果保留1位小數(shù))

查看答案和解析>>

同步練習(xí)冊答案