【題目】數(shù)學(xué)活動課上,小敏、小穎分別畫了△ABC和△DEF , 尺寸如圖.如果兩個三角形的面積分別記作S△ABC、S△DEF , 那么它們的大小關(guān)系是( 。

A.S△ABC>S△DEF
B.S△ABC<S△DEF
C.S△ABC=S△DEF
D.不能確定

【答案】C
【解析】解:如圖,過點A、D分別作AG⊥BC,DH⊥EF,垂足分別為G、H,

在Rt△ABG中,AG=ABsinB=5×sin 50°=5sin 50°,
在Rt△DHE中,∠DEH=180°﹣130°=50°,
DH=DEsin∠DEH=5sin 50°,
∴AG=DH.
∵BC=4,EF=4,
∴S△ABC=S△DEF
故選C.
【考點精析】利用解直角三角形對題目進行判斷即可得到答案,需要熟知解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,下列圖形是將正三角形按一定規(guī)律排列,則第5個圖形中所有正三角形的個數(shù)有

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一根可伸縮的魚竿,魚竿是用10節(jié)大小不同的空心套管連接而成.閑置時魚竿可收縮,完全收縮后,魚竿長度即為第1節(jié)套管的長度(如圖1所示):使用時,可將魚竿的每一節(jié)套管都完全拉伸(如圖2所示).圖3是這跟魚竿所有套管都處于完全拉伸狀態(tài)下的平面示意圖.已知第1節(jié)套管長50cm,第2節(jié)套管長46cm,以此類推,每一節(jié)套管均比前一節(jié)套管少4cm.完全拉伸時,為了使相鄰兩節(jié)套管連接并固定,每相鄰兩節(jié)套管間均有相同長度的重疊,設(shè)其長度為xcm.

(1)請直接寫出第5節(jié)套管的長度;
(2)當(dāng)這根魚竿完全拉伸時,其長度為311cm,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個幾何體是由一些大小相同的小正方塊擺成的,三視圖如圖所示,則組成這幾何體的小正方塊有( 。

A.4個
B.5個
C.6個
D.7個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖中,是木桿和旗桿豎在操場上,其中木桿在陽光下的影子已畫出.
(1)用線段表示這一時刻旗桿在陽光下的影子.
(2)比較旗桿與木桿影子的長短.
(3)圖中是否出現(xiàn)了相似三角形?
(4)為了出現(xiàn)這樣的相似三角形,木桿不可以放在圖中的哪些位置?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀光塔是濰坊市區(qū)的標志性建筑,為測量其高度,如圖,一人先在附近一樓房的底端A點處觀測觀光塔頂端C處的仰角是60°,然后爬到該樓房頂端B點處觀測觀光塔底部D處的俯角是30°已知樓房高AB約是45m , 根據(jù)以上觀測數(shù)據(jù)可求觀光塔的高CDm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰Rt△OAB和等腰Rt△OCD中,∠OAB=∠OCD=90°,AO=AB,CO=CD,等腰Rt△OAB與等腰Rt△OCD是位似圖形,O為位似中心,相似比為1:2,若點B的坐標為(1,0),則點C的坐標為( 。

A.(1,1)
B.(2,2)
C.( ,
D.(

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,點D、E分別是邊AB、AC的中點,點G、F在BC邊上,四邊形DEFG是正方形.若DE=2cm,則AC的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩個不透明的口袋,甲口袋中裝有3個分別標有數(shù)字1,2,3的小球,乙口袋中裝有2個分別標有數(shù)字4,5的小球,它們的形狀、大小完全相同,現(xiàn)隨機從甲口袋中摸出一個小球記下數(shù)字,再從乙口袋中摸出一個小球記下數(shù)字.
(1)請用列表或樹狀圖的方法(只選其中一種),表示出兩次所得數(shù)字可能出現(xiàn)的所有結(jié)果;
(2)求出兩個數(shù)字之和能被3整除的概率.

查看答案和解析>>

同步練習(xí)冊答案