【題目】某市米廠接到加工大米任務(wù),要求天內(nèi)加工完大米.米廠安排甲、乙兩車間共同完成加工任務(wù),乙車間加工中途停工一段時間維修設(shè)備,然后改變加工效率繼續(xù)加工,直到與甲車間同時完成加工任務(wù)為止,設(shè)甲、乙兩車間各自加工大米數(shù)量與甲車間加工時間(天)之間的關(guān)系如圖1所示;未加工大米與甲車間加工時間(天)之間的關(guān)系如圖2所示,請結(jié)合圖像回答下列問題
(1)甲車間每天加工大米__________;=______________;
(2)直接寫出乙車間維修設(shè)備后,乙車間加工大米數(shù)量與(天)之間的函數(shù)關(guān)系式,并指出自變量的取值范圍.
【答案】解:(1);; (2),
【解析】
(1)由圖2可知,乙停工后,第二天均為甲生產(chǎn)的即186-165=20;第一天總共生產(chǎn)220-185=35,即a+20=35,所以a為15;
(2)由圖1可知,函數(shù)關(guān)系式經(jīng)過點(diǎn)(2,15)和點(diǎn)(5,120),即可得到函數(shù)關(guān)系式.且 2≤x≤5.
解:(1)由圖2可知,乙停工后,第二天均為甲生產(chǎn)的,即186-165=20;
∴甲車間每天加工大米20t
第一天總共生產(chǎn):220-185=35,
即a+20=35,所以a為15;
故答案為20(t),15
(2)設(shè)函數(shù)關(guān)系式y=kx+b
由圖1可知,函數(shù)關(guān)系式經(jīng)過點(diǎn)(2,15)和點(diǎn)(5,120),
代入得:y=35x-55,且 2≤x≤5.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用小立方塊搭一幾何體,使它的主視圖和俯視圖如圖所示.俯視圖中小正方形中的字母表示在該位置小立方塊的個數(shù),請問:
(1)a表示幾?b的最大值是多少?
(2)這個幾何體最少由幾個小正方塊搭成?最多呢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)要在一塊三角形花圃里種植兩種不同的花草,同時擬從A點(diǎn)修建一條小路到邊BC.
(1)若要使修建小路所用的材料最少,請在下圖中畫出小路AD;
(2)若要使小路兩側(cè)種植不同花草的面積相等,請在下圖中畫出小路AE,其中E點(diǎn)滿足的條件是________,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為1的正方形ABCD的對角線AC,BD相交于點(diǎn)O,有直角∠MPN,使直角頂點(diǎn)P與點(diǎn)O重合,直角邊PM,PN分別與OA,OB重合,然后逆時針旋轉(zhuǎn)∠MPN,旋轉(zhuǎn)角為θ(0°<θ<90°),PM,PN分別交AB,BC于E,F(xiàn)兩點(diǎn),連接EF交OB于點(diǎn)G,則下列結(jié)論:(1)EF=OE;(2)S四邊形OEBF∶S正方形ABCD=1∶4;(3)BE+BF=OA;(4)在旋轉(zhuǎn)過程中,當(dāng)△BEF與△COF的面積之和最大時,AE=;(5)OG·BD=AE2+CF2,其中正確的是__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù),,,.
(1)說明點(diǎn)在直線上;
(2)當(dāng)直線經(jīng)過點(diǎn)時,點(diǎn)時直線上的一點(diǎn),若,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,兩條對角線相交于點(diǎn)O,∠BAC的平分線交BD于點(diǎn)E,若正方形ABCD的周長是16cm,則DE=____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).
(1)請畫出△ABC關(guān)于y軸對稱的△A′B′C′(其中A′,B′,C′分別是A,B,C的對應(yīng)點(diǎn),不寫畫法);
(2)直接寫出A′,B′,C′三點(diǎn)的坐標(biāo):A′( ),B′( ),C′( )
(3)計算△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E,F分別在x軸,y軸的正半軸上.點(diǎn)在線段EF上,過A作分別交x軸,y軸于點(diǎn)B,C,點(diǎn)P為線段AE上任意一點(diǎn)(P不與A,E重合),連接CP,過E作,交CP的延長線于點(diǎn)G,交CA的延長線于點(diǎn)D.有以下結(jié)論①,②,③,④,其中正確的結(jié)論是_____.(寫出所有正確結(jié)論的番號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com