【題目】科技改變生活,導(dǎo)航裝備的不斷更新極大方便了人們的出行.如圖,某校組織學(xué)生乘車到C地開展研學(xué)游活動,車到達(dá)A地后,發(fā)現(xiàn)C地恰好在A地的正北方向,且距離A20千米,導(dǎo)航顯示車輛應(yīng)沿北偏東60°方向行駛至B地,再沿西北方向行駛一段距離才能到C地,求B、C兩地的距離(計算結(jié)果用根號表示,不取近似值).

【答案】B、C兩地的距離是千米.

【解析】

過點BBDAC于點D,設(shè)ADx千米,解直角三角形即可得到結(jié)論.

過點BBDAC于點D,設(shè)ADx千米,

BAD60°,∠CBD45°

則在RtABD中,千米,

RtBDC中,千米,

AD+DCAC,

,

千米,

RtBDC中,千米

答:B、C兩地的距離是千米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖(1)所示矩形中,,滿足的反比例函數(shù)關(guān)系如圖(2)所示,等腰直角三角形的斜邊過點,的中點,則下列結(jié)論正確的是(

A. 當(dāng)時,

B. 當(dāng)時,

C. 當(dāng)增大時,的值增大

D. 當(dāng)增大時,的值不變

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“中秋節(jié)”是我國的傳統(tǒng)佳節(jié),中秋賞月吃月餅.某蛋糕店銷售“杏花樓”和“元祖”兩個品牌的月餅,每個“杏花樓”月餅的售價是15元,每個“元祖”月餅的售價是12元.

18月份,兩個品牌的月餅一共銷售180個,且總銷售額不低于2460,則賣出“杏花樓”月餅至少多少個?

29月份,月餅大量上市,受此影響,“杏花樓”月餅的售價降低了a%a%30%),銷售量在八月份的最低銷售量的基礎(chǔ)上增加了5a個,“元祖”月餅的售價降低a元,銷售量在八份的最高銷售量的基礎(chǔ)上增加了a%,結(jié)果9月份的總銷售額比8月最低銷售額增加了1020元,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在學(xué)習(xí)概率的課堂上,老師提出問題:一口袋裝有除顏色外均相同的2個紅球1個白球和1個籃球,小剛和小明想通過摸球來決定誰去看電影,同學(xué)甲設(shè)計了如下的方案:第一次隨機從口袋中摸出一球(不放回);第二次再任意摸出一球,兩人勝負(fù)規(guī)則如下:摸到一紅一白,則小剛看電影;摸到一白一藍(lán),則小明看電影.

1)同學(xué)甲的方案公平嗎?請用列表或畫樹狀圖的方法說明;

2)你若認(rèn)為這個方案不公平,那么請你改變一下規(guī)則,設(shè)計一個公平的方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線經(jīng)過點A,作ABx軸于點B,將△ABO繞點B順時針旋轉(zhuǎn)60°得到△CBD,若點B的坐標(biāo)為(1,0),則點C的坐標(biāo)為( 。

A.3,B.C.3,D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,一個智能機器人接到如下指令:從原點O出發(fā),按向右,向上,向右,向下的方向依次不斷移動,每次移動1m.其行走路線如圖所示,第1次移動到A1,第2次移動到A2,…,第n次移動到An.則△OA2A2018的面積是(  )

A. 504m2 B. m2 C. m2 D. 1009m2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,點A,B分別在x軸,y軸上,點A的坐標(biāo)為(﹣1,0),∠ABO=30°,線段PQ的端點P從點O出發(fā),沿△OBA的邊按O→B→A→O運動一周,同時另一端點Q隨之在x軸的非負(fù)半軸上運動,如果PQ=,那么當(dāng)點P運動一周時,點Q運動的總路程為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1:在RtABC中,ABAC,DBC邊上一點(不與點BC重合),試探索AD,BD,CD之間滿足的等量關(guān)系,并證明你的結(jié)論.小明同學(xué)的思路是這樣的:將線段AD繞點A逆時針旋轉(zhuǎn)90°,得到線段AE,連接EC,DE.繼續(xù)推理就可以使問題得到解決.

1)請根據(jù)小明的思路,試探索線段AD,BD,CD之間滿足的等量關(guān)系,并證明你的結(jié)論;

2)如圖2,在RtABC中,ABAC,DABC外的一點,且∠ADC45°,線段ADBD,CD之間滿足的等量關(guān)系又是如何的,請證明你的結(jié)論;

3)如圖3,已知AB是⊙O的直徑,點CD是⊙O上的點,且∠ADC45°

①若AD6,BD8,求弦CD的長為   

②若AD+BD14,求的最大值,并求出此時⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線l與直線,直線分別交于點A,B,直線與直線交于點

1)求直線軸的交點坐標(biāo);

2)橫、縱坐標(biāo)都是整數(shù)的點叫做整點.記線段圍成的區(qū)域(不含邊界)為

當(dāng)時,結(jié)合函數(shù)圖象,求區(qū)域內(nèi)的整點個數(shù);

若區(qū)域內(nèi)沒有整點,直接寫出的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案