如圖,⊙O′經(jīng)過⊙O的圓心,E、F是兩圓的交點,直線OO′交⊙O′于點P,交EF于點C,交⊙O于點Q,且EF=2
15
,sin∠P=
1
4

(1)求證:PE是⊙O的切線;
(2)求⊙O和⊙O′的半徑的長;
(3)若點A在劣弧
QF
上運動(與點Q、F不重合),連接PA交劣弧
DF
于點B,連接BC并延長交⊙O于點G,設CG=x,PA=y,求y關于x的函數(shù)關系式,并寫出自變量x的取值范圍.
(1)證明:連接OE,
∵OP是⊙O'的直徑,
∴∠OEP=90°.
∴PE是⊙O的切線.

(2)設⊙O、⊙O'的半徑分別為r,r'
∵⊙O與⊙O'交于E、F,
∴EF⊥OO',EC=
1
2
EF=
15

∴在Rt△EOC、Rt△POE中,∠OEC=∠OPE.
∴sin∠OEC=sin∠OPE=
1
4

∴sin∠OEC=
OC
OE
=
OC
r
=
1
4

即OC=
1
4
r,
r2-
1
16
r2=15
,解得r=4.
Rt△OPE中,sin∠OPE=
OE
OP
=
r
2r′

∴r'=8.

(3)連接OF,
∵∠OEP=90°,CE⊥OP,
∴PE2=PC•PO.
又∵PE是⊙O的切線,
∴PE2=PB•PA.
∴PC•PO=PB•PA.
PC
PA
=
PB
PO
,
又∵∠CPB=∠APO,
∴△CPB△APO.
BC
OA
=
PC
PA

BC=
60
PA

由相交弦定理,得BC•CG=CF•CE.
BC=
15
CG

∴PA=4CG.
即y=4x(
15
<x<5
).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,△ABC內(nèi)接于⊙O,PA,PB是切線,A、B分別為切點,若∠APB=62°,則∠C=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:AB為⊙O的直徑,∠A=∠B=90°,DE與⊙O相切于E,⊙O的半徑為
5
,AD=2.
①求BC的長;
②延長AE交BC的延長線于G點,求EG的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,點P在⊙O的直徑BA的延長線上,AB=2PA=4cm,PC切⊙O于點C,連接BC,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知,如圖,AB是⊙O的直徑,DC切⊙O于點C,AB=2BC,則∠BCD=______度.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,△ABC中,AC=BC,以BC為直徑的⊙O交AB于點D,過點D作DE⊥AC于點E,交BC的延長線于點F.
求證:
(1)AD=BD;
(2)DF是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

在Rt△ABC中,∠ACB=90°,AC=3,BC=4.以點C為圓心,R為半徑的圓與邊AB(邊AB為線段)僅有一個公共點,則R的值為(  )
A.R>3B.R=
12
5
C.R=
12
5
或3<R≤4
D.無法確定

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,兩個半圓,大半圓中長為16cm的弦AB平行于直徑CD,且與小半圓相切,則圖中陰影部分的面積為______cm2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AC為⊙O直徑,B為AC延長線上的一點,BD交⊙O于點D,∠BAD=∠B=30°.
(1)求證:BD是⊙O的切線;
(2)AB=3CB嗎?請說明理由.

查看答案和解析>>

同步練習冊答案