等腰梯形上、下底分別為5cm和9cm,高為3cm,則梯形的腰長為______.

過A作AE⊥BC于E,過D作DF⊥BC于F,
則AEDF,∠AEB=∠D=90°,
∵ADBC,
∴四邊形AEFD是平行四邊形,
∴AD=EF=5cm,AE=DF=3cm,
在Rt△AEB和Rt△DFC中
AB=DC
AE=DF
,
∴Rt△AEB≌Rt△DFC(HL),
∴BE=FC,
∵BC=9cm,EF=5cm,
∴BE=CF=2cm,
在Rt△AEB中,由勾股定理得:AB=
AE2+BE2
=
32+22
=
13
(cm),
CD=AB=
13
cm,
故答案為:
13
cm,
13
cm.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

若等腰梯形的大底與對角線的長度相等,小底與高相等,則小底與大底的比為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在直角梯形ABCD中,ABCD,AD⊥DC,AB=BC,且AE⊥BC.
(1)求證:AD=AE;
(2)若AD=8,DC=4,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,已知梯形ABCD中,ADBC,AD=3,AB=CD=4,BC=7,則∠B=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在梯形ABCD中,ABDC,AD=BC,延長AB到E,使BE=DC.
求證:AC=CE.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如下圖,直角梯形ABCD中,ADBC,AD=24cm,BC=26cm,∠B=90°,動點P從A開始沿AD邊向D以1cm/s的速度運動,動點Q從點C開始沿CB以3cm/s的速度向點B運動、P、Q同時出發(fā),當其中一點到達頂點時,另一點也隨之停止運動,設運動時間為t(s),問t為何值時,
(1)四邊形PQCD是平行四邊形.
(2)當t為何值時,四邊形PQCD為等腰梯形.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,在等腰梯形ABCD中,ADBC,對角線AC與BD交于O點,分別過B、C作AC、BD的平行線,交點為E.
①試判斷四邊形OBEC的形狀,并證明你的結論;
②對角線AC、BD滿足什么條件時,四邊形OBEC是正方形?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

將兩個形狀相同的三角板放置在一張矩形紙片上,按圖示畫線得到四邊形ABCD,則四邊形ABCD的形狀是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,梯形ABCD中,ADBC,∠A=90°,∠C=45°,BC=2AD,CD=10
2
,求這個梯形的面積.

查看答案和解析>>

同步練習冊答案