【題目】如圖,是函數(shù)上兩點(diǎn),為一動點(diǎn),作軸,軸,下列說法正確的是( )
①;②;③若,則平分;④若,則
A. ①③ B. ②③ C. ②④ D. ③④
【答案】B
【解析】①顯然AO與BO不一定相等,由此可判斷①錯誤;②延長BP,交x軸于點(diǎn)E,延長AP,交y軸于點(diǎn)F,根據(jù)矩形的性質(zhì)以及反比例函數(shù)的性質(zhì)判斷②正確;③過P作PM⊥BO,垂足為M,過P作PN⊥AO,垂足為N,由已知可推導(dǎo)得出PM=PN,繼而可判斷③正確;④設(shè)P(a,b),則B(a,)、A(,b),根據(jù)S△BOP=4,可得ab=4,繼而可判斷④錯誤.
①顯然AO與BO不一定相等,故△AOP與△BOP不一定全等,故①錯誤;
②延長BP,交x軸于點(diǎn)E,延長AP,交y軸于點(diǎn)F,
∵AP//x軸,BP//y軸,∴四邊形OEPF是矩形,S△EOP=S△FOP,
∵S△BOE=S△AOF=k=6,∴S△AOP=S△BOP,故②正確;
③過P作PM⊥BO,垂足為M,過P作PN⊥AO,垂足為N,
∵S△AOP=OAPN,S△BOP=BOPM,S△AOP=S△BOP,AO=BO,
∴PM=PN,∴PO平分∠AOB,即OP為∠AOB的平分線,故③正確;
④設(shè)P(a,b),則B(a,)、A(,b),
S△BOP=BPEO==4,
∴ab=4,
S△ABP=APBP==8,
故④錯誤,
綜上,正確的為②③,
故選B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖為K90的化學(xué)賽道,其中助滑坡AB長90米,坡角a=40°,一個曲面平臺BCD連接了助滑坡AB與著陸坡,某運(yùn)動員在C點(diǎn)飛向空中,幾秒之后落在著陸坡上的E處,已知著陸坡DE的坡度i=1: ,此運(yùn)動員成績?yōu)?/span>DE=85.5米,BD之間的垂直距離h為1米,則該運(yùn)動員在此比賽中,一共垂直下降了( )米.(參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.76,tan40°≈0.84,結(jié)果保留一位小數(shù))
A. 101.4 B. 101.3 C. 100.4 D. 100.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示:
(1)直接寫出點(diǎn)A的坐標(biāo),點(diǎn)A關(guān)于x軸的對稱點(diǎn)B的坐標(biāo),點(diǎn)B關(guān)于y軸的對稱點(diǎn)C的坐標(biāo).
(2)畫出將線段BC向右平移2個單位,再向上平移4個單位后的線段B′C′,并直接寫出B′的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,與都是等邊三角形,,下列結(jié)論中,正確的個數(shù)是( )①;②;③;④若,且,則.
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把一張對面互相平行的紙條折成如圖所示,EF是折痕,若∠EFB=32°,則下列結(jié)論不正確的有( ).
A.B.∠AEC=148°C.∠BGE=64°D.∠BFD=116°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ADC中,點(diǎn)B是邊DC上的一點(diǎn),∠DAB=∠C, .若△ADC的面積為18cm,求△ABC的面積.
【答案】10
【解析】試題分析:根據(jù)相似三角形的判定定理得到△ADC∽△BAD,根據(jù)相似三角形的面積比等于相似比的平方即可得到結(jié)論.
試題解析:∵∠DAB=∠C,∠D=∠D, ∴△ADC∽△BAD,
∴,
∵△ADC的面積為18cm2 ,
∴△BDA的面積為8cm2 ,
∴△ABC的面積=△ADC的面積﹣△BDA的面積=10cm2
【題型】解答題
【結(jié)束】
24
【題目】如圖,在網(wǎng)格圖中的△ABC與△DEF是否成位似圖形?說明理由.如果是,同時指出它們的位似中心.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖∠AED=∠C,∠DEF=∠B,請你說明∠1與∠2相等嗎?為什么?
解:因?yàn)椤?/span>AED=∠C(已知)
所以 ∥ ( )
所以∠B+∠BDE=180°( )
因?yàn)椤?/span>DEF=∠B(已知)
所以∠DEF+∠BDE=180°( )
所以 ∥ ( )
所以∠1=∠2( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列多項(xiàng)式能直接用完全平方公式進(jìn)行因式分解的是( )
A.x2+2x﹣1B. x2﹣x +C.x2+xy+y2D.9+x2﹣3x
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E,F是正方形ABCD的邊AD上兩個動點(diǎn),滿足AE=DF.連接CF交BD于點(diǎn)G,連接BE交AG于點(diǎn)H.若正方形的邊長為1,則線段DH長度的最小值是_______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com