【題目】運用圖形變化的方法研究下列問題:如圖,AB是⊙O的直徑,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8。則圖中陰影部分的面積是__________.
【答案】π
【解析】分析:作直徑CG,連接OD,OE,OF,DG,則根據(jù)圓周角定理求得DG的長,證明DG=EF,則S扇形ODG=S扇形OEF,然后根據(jù)三角形的面積公式證明S△OCD=S△ACD,S△OEF=S△AEF,則S陰影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圓,即可求解.
詳解:作直徑CG,連接OD,OE,OF,DG,
∵CG是圓的直徑,
∴∠CDG=90°,則DG=,
又∵EF=8,
∴DG=EF,
∴弧DG=弧EF,
∴S扇形ODG=S扇形OEF,
∵AB∥CD∥EF,
∴S△OCD=S△ACD,S△OEF=S△AEF,
∴S陰影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圓π×52=π,故答案為:π.
點睛:本題考查扇形面積的計算,圓周角定理,本題中找出兩個陰影部分面積之間的聯(lián)系是解題的關鍵.
科目:初中數(shù)學 來源: 題型:
【題目】(1)問題背景:如圖1,在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分別是BC,CD上的點,且∠EAF=60°,請?zhí)骄繄D中線段BE,EF,FD之間的數(shù)量關系是什么?
小明探究此問題的方法是:延長FD到點G,使DG=BE,連結AG.先證明△ABE≌△ADG,得AE=AG;再由條件可得∠EAF=∠GAF,證明△AEF≌△AGF,進而可得線段BE,EF,FD之間的數(shù)量關系是 .
(2)拓展應用:
如圖2,在四邊形ABCD中,AB=AD,∠B+∠D=180°.E,F分別是BC,CD上的點,且∠EAF=∠BAD.問(1)中的線段BE,EF,FD之間的數(shù)量關系是否還成立?若成立,請給出證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形網(wǎng)格中的每個小正方形的邊長都是1,每個小格的頂點叫做格點.
(1)在圖1中以格點為頂點畫一個面積為10的正方形;
(2)在圖2中以格點為頂點畫一個三角形,使三角形三邊長分別為2、、;
(3)如圖3,點A、B、C是小正方形的頂點,求∠ABC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C為⊙O上一點,其中AB=4,∠AOC=120°,P為⊙O上的動點,連AP,取AP中點Q,連CQ,則線段CQ的最大值為( )
A. 3 B. 1+ C. 1+3 D. 1+
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市東湖高新技術開發(fā)區(qū)某科技公司,用480萬元購得某種產(chǎn)品的生產(chǎn)技術后,并進一步投入資金1520萬元購買生產(chǎn)設備,進行該產(chǎn)品的生產(chǎn)加工,已知生產(chǎn)這種產(chǎn)品每件還需成本費40元.經(jīng)過市場調研發(fā)現(xiàn):該產(chǎn)品的銷售單價不低于100元,但不超過200元.設銷售單價為x(元),年銷售量為y(萬件),年獲利為w(萬元)該產(chǎn)品年銷售量y(萬件)與產(chǎn)品售價x(元)之間的函數(shù)關系如圖所示.
(1)直接寫出y與x之間的函數(shù)關系式,并寫出x的取值范圍;
(2)求第一年的年獲利w與x間的函數(shù)關系式,并說明投資的第一年,該公司是盈利還是虧損?并求當盈利最大或虧損最小時的產(chǎn)品售價;
(3)在(2)的條件下.即在盈利最大或虧損最小時,第二年公司重新確定產(chǎn)品售價,能否使兩年共盈利不低于1370萬元?若能,求出第二年的售價在什么范圍內(nèi);若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學為了解本校學生對球類運動的愛好情況,采用抽樣的方法,從乒乓球、羽毛球、籃球和排球四個方面調查了若干名學生,在還沒有繪制成功的“折線統(tǒng)計圖”與“扇形統(tǒng)計圖”中,請你根據(jù)已提供的部分信息解答下列問題.
(1)在這次調查活動中,一共調查了 名學生,并請補全統(tǒng)計圖.
(2)“羽毛球”所在的扇形的圓心角是 度.
(3)若該校有學生1200名,估計愛好乒乓球運動的約有多少名學生?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,四邊形ABCD,AEFG都是正方形,E、G分別在AB、AD邊上,已知AB=4.
(1)求正方形ABCD的周長;
(2)將正方形AEFG繞點A逆時針旋轉θ(0°<θ<90°)時,如圖2,求證:BE=DG.
(3)將正方形AEFG繞點A逆時針旋轉45°時,如圖3,延長BE交DG于點H,設BH與AD的交點為M.
①求證:BH⊥DG;
②當AE=時,求線段BH的長(精確到0.1).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,P是等邊三角形ABC內(nèi)的一點,且PA=3,PB=4,PC=5,以BC為邊在△ABC外作△BQC≌△BPA,連接PQ,則以下結論中正確有_____(填序號)①△BPQ是等邊三角形②△PCQ是直角三角形③∠APB=150° ④∠APC=120°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com