【題目】按要求解一元二次方程

14x28x+1=0(配方法)

27x5x+2=65x+2)(因式分解法)

33x2+52x+1=0(公式法)

4x22x8=0

5(6x1)225

【答案】()x1=1+,x2=1;(2x1=,x2=;(3x1=,x2=;(4x1=4x2=2;(5x1=1, x2

【解析】

1)首先將常數(shù)項移到等號的右側(cè),將等號左右兩邊同時加上一次項系數(shù)一半的平方,即可將等號左邊的代數(shù)式寫成完全平方形式;

2)方程移項變形后,采用提公因式法,可得方程因式分解的形式,即可求解;

3)方程化為一般形式,找出二次項系數(shù),一次項系數(shù)及常數(shù)項,計算出根的判別式,發(fā)現(xiàn)其結(jié)果大于0,故利用求根公式可得出方程的兩個解;

4)方程左邊分解因式,即可得出兩個一元一次方程,求出方程的解即可;

5)兩邊開方,即可得出兩個一元一次方程,求出方程的解即可.

解:(14x28x+1=0(配方法)

移項得,x22x=

配方得,x22x+1=+1

x12= ,

x1=±

x1=1+,x2=1

27x5x+2=65x+2)(因式分解法)

7x5x+2)﹣65x+2=0,

5x+2)(7x6=0

5x+2=0,7x6=0

x1=,x2=;

33x2+52x+1=0(公式法)

整理得,3x2+10x+5=0

a=3,b=10,c=5,b24ac=10060=40,

x= ,

x1=x2=;

4x22x8=0

x-4)(x+2=0,
x-4=0,x+2=0
x1=4,x2=-2;

5(6x1)225

兩邊開方,得6x1=±5

x1=1, x2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年四月份,某校在孝感市爭創(chuàng)全國文明城市 活動中,組織全體學(xué)生參加了弘揚(yáng)孝感文化,爭做文明學(xué)生知識競賽,賽后隨機(jī)抽取了部分參賽學(xué)生的成績,按得分劃分 六個等級,并繪制成如下兩幅完整的統(tǒng)計圖.

根據(jù)表提供的,解答下列問題:

(1)本次抽樣調(diào)查樣本容量為 表中: , ;扇形統(tǒng)計圖中, 等級對應(yīng)圓心角 等于 ;(4分=1+1+1

(2)該校決定從本次抽取 等級學(xué)生(為甲、乙、丙、。┲隨機(jī)選擇 名成為學(xué)校文明講志愿者,請你用列表法或畫樹狀的方法,求恰好抽到甲和乙的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,EAB上一點,連接DE.過點AAFDE,垂足為F,⊙O經(jīng)過點C、D、F,與AD相交于點G

(1)求證:△AFG∽△DFC;

(2)若正方形ABCD的邊長為4,AE=1,求O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,已知C90°,B50°,點D在邊BC上,BD2CD(圖4).把ABC繞著點D逆時針旋轉(zhuǎn)m0m180)度后,如果點B恰好落在初始RtABC的邊上,那么m_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=kx+bx軸、y軸分別交于點A,B,且OA,OB的長(OA > OB)是方程x2-10x +24=0的兩個根,P(m,n)是第一象限內(nèi)直線y=kx+b上的一個動點(P不與點AB重合).

1)求直線AB的解析式;

2Cx軸上一點,且OC=2,求ACP的面積Sm之間的函數(shù)關(guān)系式;

3)在x軸上是否存在點Q,使以A,B,Q為頂點的三角形是等腰三角形?若存在,請直接寫出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c (a≠0)的圖象如圖所示,對稱軸是x=-1.下列結(jié)論:①ab>0;②b2>4ac;③a-b+2c<0;④8a+c<0.其中正確的是( )

A. ③④ B. ①②③ C. ①②④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個結(jié)論:①abc>0;②b<a+c;③4a+2b+c>0;④2c–3b<0;⑤a+b>n(an+b)(n≠1),其中正確的結(jié)論有( )

A. 2個 B. 3個 C. 4個 D. 5個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,利用一面長為34米的墻,用鐵柵欄圍成一個矩形自行車場地ABCD,在ABBC邊各有一個2米寬的小門(不用鐵柵欄).設(shè)矩形ABCD的邊AD長為x米,AB長為y米,矩形的面積為S平方米,且xy

1)若所用鐵柵欄的長為40米,求yx的函數(shù)關(guān)系式,并直接寫出自變量x的取值范圍;

2)在(1)的條件下,求Sx的函數(shù)關(guān)系式,并求出怎樣圍才能使矩形場地的面積為192平方米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系內(nèi),拋物線x軸交于點AC(點A在點C的左側(cè)),與y軸交于點B,頂點為D.Q為線段BC的三等分點(靠近點C.

1)點M為拋物線對稱軸上一點,點E為對稱軸右側(cè)拋物線上的點且位于第一象限,當(dāng)的周長最小時,求面積的最大值;

2)在(1)的條件下,當(dāng)的面積最大時,過點E軸,垂足為N,將線段CN繞點C順時針旋轉(zhuǎn)90°得到點N,再將點N向上平移個單位長度.得到點P,點G在拋物線的對稱軸上,請問在平面直角坐標(biāo)系內(nèi)是否存在一點H,使點D,P,GH構(gòu)成菱形.若存在,請直接寫出點H的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案