(1)若cosα=
1
3
,α為銳角,則sinα=
2
2
3
2
2
3
;
(2)若tanα=2,則
cos2a
sin2a
=
1
4
1
4
分析:(1)根據(jù)sin2α+cos2α=1,可求出cosα的值.
(2)化簡可得
cos2a
sin2a
=
1
tan2α
,代入即可得出答案.
解答:解:(1)∵sin2α+cos2α=1,cosα=
1
3
,
∴sin2α=
8
9

又∵α為銳角,
∴sinα=
2
2
3

(2)
cos2a
sin2a
=(
cosα
sinα
)2
=(
1
tanα
2=
1
4

故答案為:
2
2
3
1
4
點評:本題考查了同角三角函數(shù)的關(guān)系,注意掌握據(jù)sin2α+cos2α=1,tanα=
sinα
cosα
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠C=90°,AC=9cm,AB的垂直平分線MN交AC于D,連接BD,若cos∠BDC=
45
,則BC的長是
 
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

若cos(36°-A)=
7
8
,則sin(54°+A)的值是( 。
A、
8
7
B、
7
8
C、
15
8
D、
1
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

若cosα=2m-1(α為銳角),則m的取值范圍是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

現(xiàn)場學習:我們知道,若銳角α的三角函數(shù)值為sinα=m,則可通過計算器得到角α的大小,這時我們用arcsinm來表示α,
記作:α=arcsinm;若cosα=m,則記α=arccosm;若tanα=m,則記α=arctanm.
解決問題:如圖,已知正方形ABCD,點E是邊AB上一動點,點F在AB邊或其延長線上,點G在邊AD上.連接ED,F(xiàn)G,交點為H.
(1)如圖1,若AE=BF=GD,請直接寫出∠EHF=
 
°;
(2)如圖2,若EF=
2
5
CD,GD=
2
5
AE,設∠EHF=α.請判斷當點E在AB上運動時,∠EHF的大小是否發(fā)生變化?若發(fā)生變化,請說明理由;若不發(fā)生變化,請求出α.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,P是⊙O外一點,PA是⊙O的切線,A是切點,B是⊙O 上一點,且PA精英家教網(wǎng)=PB,連接AO、BO、AB,并延長BO與切線PA相交于點Q.
(1)求證:PB是⊙O的切線;
(2)求證:AQ•PQ=OQ•BQ;
(3)設∠AOQ=α,若cosα=
45
,OQ=15,求AB的長.

查看答案和解析>>

同步練習冊答案