【題目】已知拋物線y=ax2+bx-3a≠0)經(jīng)過點(diǎn)(-2,-3.

1)用a表示b

2)當(dāng)x≥-2時(shí),y≤-2,求拋物線的解析式.

3)無論a取何值,若一次函數(shù)y2=a2x+m總經(jīng)過y的頂點(diǎn),求證:m

【答案】1b2a;(2y=﹣x22x3;(3)見解析.

【解析】

1)將點(diǎn)(﹣2,﹣3)代入拋物線yax2+2ax3即可求解;

2)當(dāng)x≥﹣2時(shí),y≤﹣2,則a0,拋物線的頂點(diǎn)坐標(biāo)為:(﹣1,﹣3a),即﹣3a=﹣2,解得:a=﹣1,即可求解;

3)將y的頂點(diǎn)坐標(biāo)代入y2a2x+m得:ma2a3,根據(jù)10可得m有最大值,此時(shí),a,最小值為,即可求解.

解:(1)將點(diǎn)(﹣2,﹣3)坐標(biāo)代入拋物線y的表達(dá)式

得:﹣34a2b3,

解得:b2a;

2)當(dāng)x≥﹣2時(shí),y1≤﹣2,則a0,

拋物線的頂點(diǎn)坐標(biāo)為:(﹣1,﹣3a),

即﹣3a=﹣2,

解得:a=﹣1,

故拋物線的表達(dá)式為:y=﹣x22x3;

3y的頂點(diǎn)坐標(biāo)代入y2a2x+m

得:ma2a3,

10,

m有最小值,

此時(shí),a時(shí),最小值為,

m

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市從不同學(xué)校隨機(jī)抽取100名初中生對(duì)使用數(shù)學(xué)教輔用書的冊(cè)數(shù)進(jìn)行調(diào)查,統(tǒng)計(jì)結(jié)果如下:

冊(cè)數(shù)

0

1

2

3

人數(shù)

10

20

30

40

關(guān)于這組數(shù)據(jù),下列說法正確的是( 。

A.眾數(shù)是2冊(cè)B.中位數(shù)是2冊(cè)

C.平均數(shù)是3冊(cè)D.方差是1.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】校園安全越來越受到人們的關(guān)注,我市某中學(xué)對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.根據(jù)圖中信息回答下列問題:

1)接受問卷調(diào)查的學(xué)生共有______人,條形統(tǒng)計(jì)圖中m的值為______

2)扇形統(tǒng)計(jì)圖中了解很少部分所對(duì)應(yīng)扇形的圓心角的度數(shù)為______;

3)若該中學(xué)共有學(xué)生1800人,根據(jù)上述調(diào)查結(jié)果,可以估計(jì)出該學(xué)校學(xué)生中對(duì)校園安全知識(shí)達(dá)到非常了解基本了解程度的總?cè)藬?shù)為______人;

4)若從對(duì)校園安全知識(shí)達(dá)到非常了解程度的2名男生和2名女生中隨機(jī)抽取2人參加校園安全知識(shí)競(jìng)賽,請(qǐng)用列表或畫樹狀圖的方法,求恰好抽到1名男生和1名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是一手機(jī)支架,其中AB8cm,底座CD1cm,當(dāng)點(diǎn)A正好落在桌面上時(shí)如圖2所示,∠ABC80°,∠A60°.

1)求點(diǎn)B到桌面AD的距離;

2)求BC的長(zhǎng).(結(jié)果精確到0.1cm;參考數(shù)據(jù):sin50°≈0.77cos50°≈0.64,tan50°≈1.19,1.73

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為4,將ADECDF分別沿直線DEDF折疊后,點(diǎn)A和點(diǎn)C同時(shí)落在點(diǎn)H處,且EAB中點(diǎn),射線DHACG,交CBM,則GH的長(zhǎng)是__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,點(diǎn)A、B、C、D均在格點(diǎn)上.點(diǎn)E為直線CD上的動(dòng)點(diǎn),連接BE,作AFBEF.點(diǎn)PBC邊上的動(dòng)點(diǎn),連接DPPF

(Ⅰ)當(dāng)點(diǎn)ECD邊的中點(diǎn)時(shí),△ABF的面積為 ;

(Ⅱ)當(dāng)DPPF最短時(shí),請(qǐng)?jiān)趫D2所示的網(wǎng)格中,用無刻度的直尺畫出點(diǎn)P,并簡(jiǎn)要說明點(diǎn)P的位置是如何找到的(不要求證明)              

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)和正比例函數(shù)y=x的圖象如圖所示,則方程ax2+bx+c=0(a≠0)的兩根之和

A. 大于0 B. 等于0 C. 小于0 D. 不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,、是正方形的邊上的兩個(gè)動(dòng)點(diǎn),滿足,連接于點(diǎn),連接于點(diǎn),連接,若正方形的邊長(zhǎng)為2,則線段的最小值是(

A.2B.1C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中,,.點(diǎn)上,連接,折疊矩形,點(diǎn)與點(diǎn)都恰好落在上的點(diǎn)處,折痕是、、的對(duì)應(yīng)線段交于點(diǎn),則線段的長(zhǎng)度是______

查看答案和解析>>

同步練習(xí)冊(cè)答案