(本題滿(mǎn)分12分)在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(2,2),點(diǎn)C是線(xiàn)段OA上的一個(gè)動(dòng)點(diǎn)(不運(yùn)動(dòng)至O,A兩點(diǎn)),過(guò)點(diǎn)C作CD⊥x軸,垂足為D,以CD為邊在右側(cè)作正方形CDEF. 連接AF并延長(zhǎng)交x軸的正半軸于點(diǎn)B,連接OF,設(shè)OD=t.

【小題1】⑴ 求tan∠FOB的值;
【小題2】⑵用含t的代數(shù)式表示△OAB的面積S;
【小題3】⑶是否存在點(diǎn)C,使以B,E,F為頂點(diǎn)的三角形與△OFE相似,若存在,請(qǐng)求出所有滿(mǎn)足要求的B點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.


【小題1】解:(1)∵A(2,2)     ∴∠AOB=45°  ∴CD=OD=DE=EF=     ∴
【小題2】(2)由△ACF~△AOB得   ∴      ∴
【小題3】(3)要使△BEF與△OFE相似,∵∠FEO=∠FEB=90°,∴只要,即:
① 當(dāng)時(shí), ,∴   ∴(舍去)或   ∴B(6,0)
② 當(dāng)時(shí),
(ⅰ)當(dāng)B在E的左側(cè)時(shí),,  ∴   ∴(舍去)或   ∴B(1,0)
(ⅱ)當(dāng)B在E的右側(cè)時(shí),,  ∴   ∴(舍去)或   ∴B(3,0)

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本題滿(mǎn)分12分)在平面直角坐標(biāo)系中,一次函數(shù)的圖象與坐標(biāo)軸圍成的三角形,叫做此一次函數(shù)的坐標(biāo)三角形.例如,圖中的一次函數(shù)的圖象與x,y軸分別交于點(diǎn)A,B,則△OAB為此函數(shù)的坐標(biāo)三角形.

(1)求函數(shù)yx+3的坐標(biāo)三角形的三條邊長(zhǎng);    

(2)若函數(shù)yxbb為常數(shù))的坐標(biāo)三角形周長(zhǎng)為16,求此三角形面積.

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本題滿(mǎn)分12分)在平面直角坐標(biāo)系xOy中,邊長(zhǎng)為a(a為大于0的常數(shù))的正方形ABCD的對(duì)角線(xiàn)AC、BD相交于點(diǎn)P,頂點(diǎn)A在x軸正半軸上運(yùn)動(dòng),頂點(diǎn)B在y軸正半軸上運(yùn)動(dòng)(x軸的正半軸、y軸的正半軸都不包含原點(diǎn)O),頂點(diǎn)C、D都在第一象限。

(1)當(dāng)∠BAO=45°時(shí),求點(diǎn)P的坐標(biāo);

(2)求證:無(wú)論點(diǎn)A在x軸正半軸上、點(diǎn)B在y軸正半軸上怎樣運(yùn)動(dòng),點(diǎn)P都在∠AOB的平分線(xiàn)上;

(3)設(shè)點(diǎn)P到x軸的距離為h,試確定h的取值范圍,并說(shuō)明理由。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本題滿(mǎn)分12分)在平面直角坐標(biāo)系中,一次函數(shù)的圖象與坐標(biāo)軸圍成的三角形,叫做此一次函數(shù)的坐標(biāo)三角形.例如,圖中的一次函數(shù)的圖象與x,y軸分別交于點(diǎn)A,B,則△OAB為此函數(shù)的坐標(biāo)三角形.

(1)求函數(shù)yx+3的坐標(biāo)三角形的三條邊長(zhǎng);

(2)若函數(shù)yxbb為常數(shù))的坐標(biāo)三角形周長(zhǎng)為16,求此三角形面積.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012年江蘇省揚(yáng)州市九年級(jí)第一學(xué)期期末考試數(shù)學(xué)卷 題型:解答題

(本題滿(mǎn)分12分)在直角坐標(biāo)系中,拋物線(xiàn)經(jīng)過(guò)點(diǎn)(0,10)

和點(diǎn)(4,2).

1.(1) 求這條拋物線(xiàn)的函數(shù)關(guān)系式.

2.(2)如圖,在邊長(zhǎng)一定的矩形ABCD中,CD=1,點(diǎn)Cy軸右側(cè)沿拋物線(xiàn) 滑動(dòng),在滑動(dòng)過(guò)程中CDx軸,ABCD的下方.當(dāng)點(diǎn)Dy軸上時(shí),AB正好落在x軸上.

①求邊BC的長(zhǎng).

②當(dāng)矩形ABCD在滑動(dòng)過(guò)程中被x軸分成兩部分的面

積比為1:4時(shí),求點(diǎn)C的坐標(biāo).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:江蘇省蘇州市高新區(qū)2013屆七年級(jí)下學(xué)期期末考試數(shù)學(xué)試題 題型:解答題

(本題滿(mǎn)分12分)在平面直角坐標(biāo)系中,已知二次函數(shù)的圖象與x軸交于A(yíng),B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),AB=4,與y軸交于點(diǎn)C,且過(guò)點(diǎn)(2,3).

(1)求此二次函數(shù)的表達(dá)式;

(2)若拋物線(xiàn)的頂點(diǎn)為D,連接CD、CB,問(wèn)拋物線(xiàn)上是否存在點(diǎn)P,使得∠PBC+∠BDC=90°. 若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

(3)點(diǎn)K拋物線(xiàn)上C關(guān)于對(duì)稱(chēng)軸的對(duì)稱(chēng)點(diǎn),點(diǎn)G拋物線(xiàn)上的動(dòng)點(diǎn),在x軸上是否存在點(diǎn)F,使A、K、F、G這樣的四個(gè)點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出所有滿(mǎn)足條件的F點(diǎn)坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案