【題目】某校為了豐富學(xué)生的校園生活,準(zhǔn)備購進(jìn)一批籃球和足球.其中籃球的單價比足球的單價多40元,用1500元購進(jìn)的籃球個數(shù)與900元購進(jìn)的足球個數(shù)相等.
(1)籃球和足球的單價各是多少元?
(2)該校打算用1000元購買籃球和足球,問恰好用完1000元,并且籃球、足球都買有的購買方案有哪幾種?

【答案】
(1)

解:設(shè)足球單價為x元,則籃球單價為(x+40)元,由題意得:

解得:x=60,

經(jīng)檢驗:x=60是原分式方程的解,

則x+40=100,

答:籃球和足球的單價各是100元,60元


(2)

解:設(shè)恰好用完1000元,可購買籃球m個和購買足球n個,

由題意得:100m+60n=1000,

整理得:m=10﹣ n,

∵m、n都是正整數(shù),

∴①n=5時,m=7,②n=10時,m=4,③n=15,m=1;

∴有三種方案:

①購買籃球7個,購買足球5個;

②購買籃球4個,購買足球10個;

③購買籃球1個,購買足球15個


【解析】(1)首先設(shè)足球單價為x元,則籃球單價為(x+40)元,根據(jù)題意可得等量關(guān)系:1500元購進(jìn)的籃球個數(shù)=900元購進(jìn)的足球個數(shù),由等量關(guān)系可得方程 ,再解方程可得答案;(2)設(shè)恰好用完1000元,可購買籃球m個和購買足球n個,根據(jù)題意可得籃球的單價×籃球的個數(shù)m+足球的單價×足球的個數(shù)n=1000,再求出整數(shù)解即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如圖1,點M,N把線段AB分割成AM,MN和BN,若以AM,MN,BN為邊的三角形是一個直角三角形,則稱點M,N是線段AB的勾股分割點

(1)已知點M,N是線段AB的勾股分割點,若AM=3,MN=4求BN的長;
(2)已知點C是線段AB上的一定點,其位置如圖2所示,請在BC上畫一點D,使C,D是線段AB的勾股分割點(要求尺規(guī)作圖,保留作圖痕跡,畫出一種情形即可)
(3)如圖3,正方形ABCD中,M,N分別在BC,DC上,且BM≠DN,∠MAN=45°,AM,AN分別交BD于E,F(xiàn)

求證:①E、F是線段BD的勾股分割點;
②△AMN的面積是△AEF面積的兩倍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)軸上有A、B、C三個點對應(yīng)的數(shù)分別是a、b、c,滿足|a+24|+|b+10|+(c﹣10)2=0;動點PA出發(fā),以每秒1個單位的速度向終點C移動,設(shè)移動時間為t秒.當(dāng)點P運動到B點時,點QA點出發(fā),以每秒3個單位的速度向C點運動,Q點到達(dá)C點后,再立即以同樣的速度返回,運動到終點A.在返回過程中,當(dāng)t=_____秒時,P、Q兩點之間的距離為2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC三個頂點的坐標(biāo)分別為A(0,3),B(﹣3,5),C(﹣4,1).

①把△ABC向右平移2個單位得△A1B1C1 , 請畫出△A1B1C1 , 并寫出點A1的坐標(biāo);
②把△ABC繞原點O旋轉(zhuǎn)180°得到△A2B2C2 , 請畫出△A2B2C2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給出以下結(jié)論:
①b2>4ac;
②abc>0;
③2a﹣b=0;
④8a+c<0;
⑤9a+3b+c<0.
其中結(jié)論正確的是 . (填正確結(jié)論的序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形ABCD中,AB=2,BC=4,AD=6,M是CD的中點,點P在直角梯形的邊上沿A→B→C→M運動,則△APM的面積y與點P經(jīng)過的路程x之間的函數(shù)關(guān)系用圖象表示是( 。

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的對角線BD、AC分別為2、2 ,以B為圓心的弧與AD、DC相切,則陰影部分的面積是(  )

A.2 π
B.4 π
C.4 ﹣π
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個頂點的坐標(biāo)分別為A(﹣4,3)、B(﹣3,1)、C(﹣1,3).

(1)請按下列要求畫圖:
①將△ABC先向右平移4個單位長度、再向上平移2個單位長度,得到△A1B1C1 , 畫出△A1B1C1;
②△A2B2C2與△ABC關(guān)于原點O成中心對稱,畫出△A2B2C2
(2)在(1)中所得的△A1B1C1和△A2B2C2關(guān)于點M成中心對稱,請直接寫出對稱中心M點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點Ax軸的正半軸上,頂點Cy軸的正半軸上,OA=12,OC=9,連接AC.

(1)填空:點A的坐標(biāo):   ;點B的坐標(biāo):   

(2)CD平分∠ACO,交x軸于D,求點D的坐標(biāo);

(3)在(2)的條件下,經(jīng)過點D的直線交直線BCE,當(dāng)△CDE為以CD為底的等腰三角形時,求點E的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案