【題目】如圖,在矩形紙片ABCD中,已知AB=6,BC=8,E是邊AD上的點(diǎn),以CE為折痕折疊紙片,使點(diǎn)D落在點(diǎn)F處,連接FC,當(dāng)AEF為直角三角形時(shí),DE的長(zhǎng)為________.

【答案】36.

【解析】

如圖1,所示,由∠CFE+AFE=180°,可知點(diǎn)A、F、C在一條直線上,先求得AC的長(zhǎng),然后由AEF∽△ACD可求得ED的長(zhǎng);如圖2所示,可證明四邊形CDEF為正方形從而可求得ED的長(zhǎng).

如圖1所示:

由翻折的性質(zhì)可知:EF=ED,EFC=EDC=90°,

∵△AEF為直角,

∴∠AFE=90°

∴∠CFE+AFE=180°

∴點(diǎn)A、F、C在一條直線上.

RtABC中,AC=

設(shè)DE=x,則EF=x.

∵∠EAF=DAC,EFA=CDA,

∴△AEF∽△ACD.

,即

解得:x=3.

ED=3.

如圖2所示:

∵∠AEF=90°,

∴∠FED=90°

∴∠FED=D=DCF=90°

∴四邊形CDEF為矩形.

由翻折的性質(zhì)可知:DE=EF.

∴四邊形CDEF為正方形.

DE=DC=6.

綜上所述,ED的長(zhǎng)為36.

故答案為:36.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“國(guó)美”、“蘇寧”兩家電器商場(chǎng)出售同樣的空氣凈化器和過(guò)濾網(wǎng),空氣凈化器和過(guò)濾網(wǎng)在兩家商場(chǎng)的售價(jià)一樣.已知買(mǎi)一個(gè)空氣凈化器和個(gè)過(guò)濾網(wǎng)要花費(fèi)元,買(mǎi)個(gè)空氣凈化器和個(gè)過(guò)濾網(wǎng)要花費(fèi)元.

)請(qǐng)用方程組求出一個(gè)空氣凈化器與一個(gè)過(guò)濾網(wǎng)的銷(xiāo)售價(jià)格分別是多少元?

)為了迎接新年,兩家商場(chǎng)都在搞促銷(xiāo)活動(dòng),“國(guó)美”規(guī)定:這兩種商品都打九五折;“蘇寧”規(guī)定:買(mǎi)一個(gè)空氣凈化器贈(zèng)送兩個(gè)過(guò)濾網(wǎng).若某單位想要買(mǎi)個(gè)空氣凈化器和個(gè)過(guò)濾網(wǎng),如果只能在一家商場(chǎng)購(gòu)買(mǎi),請(qǐng)問(wèn)選擇哪家商場(chǎng)購(gòu)買(mǎi)更合算?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的口袋里裝有分別標(biāo)有數(shù)字1,2,3,4四個(gè)小球,除數(shù)字不同外,小球沒(méi)有任何區(qū)別,每次實(shí)驗(yàn)先攪拌均勻.
(1)若從中任取一球,球上的數(shù)字為偶數(shù)的概率為多少?
(2)若從中任取一球(不放回),再?gòu)闹腥稳∫磺,?qǐng)用畫(huà)樹(shù)狀圖或列表格的方法求出兩個(gè)球上的數(shù)字之和為偶數(shù)的概率.
(3)若設(shè)計(jì)一種游戲方案:從中任取兩球,兩個(gè)球上的數(shù)字之差的絕對(duì)值為1為甲勝,否則為乙勝,請(qǐng)問(wèn)這種游戲方案設(shè)計(jì)對(duì)甲、乙雙方公平嗎?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△BDE中,∠BDE=90°,BD=6 ,點(diǎn)D的坐標(biāo)是(7,0),∠BDO=15°,將△BDE旋轉(zhuǎn)到△ABC的位置,點(diǎn)C在BD上,則旋轉(zhuǎn)中心的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,∠B=30°

(1)作邊AB的垂直平分線交AB于點(diǎn)D,交BC于點(diǎn)E(尺規(guī)作圖,不寫(xiě)作法,保留作圖痕跡).

(2)連接AE,求證:AE=2DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖1和圖2中的正方形ABCD和四邊形AEFG都是正方形.
(1)如圖1,連接DE,BG,M為線段BG的中點(diǎn),連接AM,探究AM與DE的數(shù)量關(guān)系和位置關(guān)系,并證明你的結(jié)論;
(2)在圖1的基礎(chǔ)上,將正方形AEFG繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)到圖2的位置,連結(jié)DE、BG,M為線段BG的中點(diǎn),連結(jié)AM,探究AM與DE的數(shù)量關(guān)系和位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC的兩條中線AD、CE交于點(diǎn)G,且AD⊥CE.連接BG并延長(zhǎng)與AC交于點(diǎn)F,若AD=9,CE=12,則GF為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過(guò)點(diǎn)C,且AD⊥MN于D,BE⊥MN于E.

(1)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖1的位置時(shí),求證:DE=AD+BE;

(2)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖2的位置時(shí),求證:DE=AD-BE;

(3)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖3的位置時(shí),試問(wèn)DE、AD、BE具有怎樣的等量關(guān)系?請(qǐng)直接寫(xiě)出這個(gè)等量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線l:y=x﹣1與x軸交于點(diǎn)A1 , 如圖所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形AnBnCnCn1 , 使得點(diǎn)A1、A2、A3、…在直線l上,點(diǎn)C1、C2、C3、…在y軸正半軸上,則點(diǎn)Bn的坐標(biāo)是

查看答案和解析>>

同步練習(xí)冊(cè)答案