【題目】如圖,一個(gè)長5m的梯子AB,斜靠在一豎直的墻AO上,這時(shí)AO的距離為4m,如果梯子的頂端A沿墻下滑1m至C點(diǎn).

(1)求梯子底端B外移距離BD的長度;

(2)猜想CE與BE的大小關(guān)系,并證明你的結(jié)論.

【答案】(1)BD=1m;(2)CE與BE的大小關(guān)系是CE=BE,證明見解析.

【解析】

(1)利用勾股定理求出OB,求出OC,再根據(jù)勾股定理求出OD,即可求出答案;

(2)求出△AOB和△DOC全等,根據(jù)全等三角形的性質(zhì)得出OC=OB,ABO=DCO,求出∠OCB=OBC,求出∠EBC=ECB,根據(jù)等腰三角形的判定得出即可.

1)AOOD,AO=4m,AB=5m,

OB==3m,

∵梯子的頂端A沿墻下滑1mC點(diǎn),

OC=AO﹣AC=3m,

CD=AB=5m,

∴由勾股定理得:OD=4m,

BD=OD﹣OB=4m﹣3m=1m;

(2)CEBE的大小關(guān)系是CE=BE,證明如下:

連接CB,由(1)知:AO=DO=4m,AB=CD=5m,

∵∠AOB=DOC=90°,

RtAOBRtDOC

,

RtAOBRtDOC(HL),

∴∠ABO=DCO,OC=OB,

∴∠OCB=OBC,

∴∠ABO﹣OBC=DCO﹣OCB,

∴∠EBC=ECB,

CE=BE.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一漁船由西往東航行,在A點(diǎn)測得海島C位于北偏東60°的方向,前進(jìn)20海里到達(dá)B點(diǎn),此時(shí),測得海島C位于北偏東30°的方向,則海島C到航線AB的距離CD等于海里.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,拋物線m:y=ax2+b(a<0,b>0)與x軸于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.將拋物線m繞點(diǎn)B旋轉(zhuǎn)180°,得到新的拋物線n,它的頂點(diǎn)為C1 , 與x軸的另一個(gè)交點(diǎn)為A1

(1)當(dāng)a=﹣1,b=1時(shí),求拋物線n的解析式;
(2)四邊形AC1A1C是什么特殊四邊形,請寫出結(jié)果并說明理由;
(3)若四邊形AC1A1C為矩形,請求出a,b應(yīng)滿足的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中有一正方形AOBC,反比例函數(shù) 經(jīng)過正方形AOBC對角線的交點(diǎn),半徑為(4﹣2 )的圓內(nèi)切于△ABC,則k的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠ACB=90°,點(diǎn)D,E分別是AB,BC上的點(diǎn),且滿足AC=DC=DE=BE=1,則tanA=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將△ABC沿角平分線BD所在直線翻折,頂點(diǎn)A恰好落在邊BC的中點(diǎn)E處,AE=BD,那么tan∠ABD=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲,乙兩輛汽車先后從A地出發(fā)到B地,甲車出發(fā)1小時(shí)后,乙車才出發(fā),如圖所示的l1和l2表示甲,乙兩車相對于出發(fā)地的距離y(km)與追趕時(shí)間x(h)之間的關(guān)系:

(1)哪條線表示乙車離出發(fā)地的距離y與追趕時(shí)間x之間的關(guān)系?

(2)甲,乙兩車的速度分別是多少?

(3)試分別確定甲,乙兩車相對于出發(fā)地的距離y(km)與追趕時(shí)間x(h)之間的關(guān)系式;

(4)乙車能在1.5小時(shí)內(nèi)追上甲車嗎?若能,說明理由;若不能,求乙車出發(fā)幾小時(shí)才能追上甲?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】
(1)當(dāng)一次性購物標(biāo)價(jià)總額是300元時(shí),甲、乙超市實(shí)付款分別是多少?
(2)當(dāng)標(biāo)價(jià)總額是多少時(shí),甲、乙超市實(shí)付款一樣?
(3)小王兩次到乙超市分別購物付款198元和466元,若他只去一次該超市購買同樣多的商品,可以節(jié)省多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸的交點(diǎn)的橫坐標(biāo)分別為﹣1,3,則下列結(jié)論正確的個(gè)數(shù)有( ) ①ac<0;②2a+b=0;③4a+2b+c>0;④對于任意x均有ax2+bx≥a+b.

A.1
B.2
C.3
D.4

查看答案和解析>>

同步練習(xí)冊答案