在△ABC中,∠A=90°,AB=8cm,AC=6cm,點M,點N同時從點A出發(fā),點M沿邊AB以4cm/s的速度向點B運動,點N從點A出發(fā),沿邊AC以3cm/s的速度向點C運動,(點M不與A,B重合,點N不與A,C重合),設(shè)運動時間為xs。
(1)求證:△AMN∽△ABC;
(2)當(dāng)x為何值時,以MN為直徑的⊙O與直線BC相切?
(3)把△AMN沿直線MN折疊得到△MNP,若△MNP與梯形BCNM重疊部分的面積為y,試求y 關(guān)于x的函數(shù)表達(dá)式,并求x為何值時,y的值最大,最大值是多少?
解:(1)∵,∠A=∠A.
∴ △AMN ∽ △ABC.
(2)在Rt△ABC中,BC ==10.
由(1)知 △AMN ∽ △ABC.
∴
∴ ,
∴⊙O的半徑r=
可求得圓心O到直線BC的距離d=
∵⊙O與直線BC相切
∴=. 解得=
當(dāng)=時,⊙O與直線BC相切
(3)當(dāng)P點落在直線BC上時,則點M為AB的中點.
故以下分兩種情況討論:
①當(dāng)0<≤1時,.
∴ 當(dāng)=1時,
② 當(dāng)1<<2時, 設(shè)MP交BC于E,NP交BC于F
MB=8-4,MP=MA=4
∴PE=4-(8-4)=8-8
∴ 當(dāng)時,.
綜上所述,當(dāng)時,值最大,最大值是8
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(廣西桂林卷)數(shù)學(xué)(帶解析) 題型:解答題
如圖,在△ABC中,∠BAC=90°,AB=AC=6,D為BC的中點.
(1)若E、F分別是AB、AC上的點,且AE=CF,求證:△AED≌△CFD;
(2)當(dāng)點F、E分別從C、A兩點同時出發(fā),以每秒1個單位長度的速度沿CA、AB運動,到點A、B
時停止;設(shè)△DEF的面積為y,F(xiàn)點運動的時間為x,求y與x的函數(shù)關(guān)系式;
(3)在(2)的條件下,點F、E分別沿CA、AB的延長線繼續(xù)運動,求此時y與x的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013屆遼寧省大石橋市水源二中九年級上學(xué)期階段檢測數(shù)學(xué)試卷(帶解析) 題型:解答題
在△ABC中,AB=AC,∠BAC=α,點D是BC上一動點(不與B、C重合),將線段AD繞點A逆時針旋轉(zhuǎn)α后到達(dá)AE位置,連接DE、CE,設(shè)∠BCE=β.
(1)如圖1,若α=90°,求β的大。
(2)如圖2,當(dāng)點D在線段BC上運動時,試探究α與β之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)當(dāng)點D在線段BC的反向延長線上運動時(畫出圖形),(2)中的結(jié)論是否仍然成立?若成立,請證明,若不成立,請直接寫出α與β之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:人教版初三年級數(shù)學(xué)相似形提高測試 題型:填空題
如圖,在△ABC中,AB=AC=27,D在AC上,且BD=BC=18,DE∥BC交AB于E,則DE=_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013屆江蘇省鎮(zhèn)江市初一四月月考數(shù)學(xué)卷 題型:解答題
如圖,在ΔABC中,AB=AC=10,BC=8.用尺規(guī)作圖作BC邊上的中線AD(保留作圖痕跡,不要求寫作法、證明),并求AD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com