【題目】M3x25x1,N2x25x7,其中x為任意數(shù),則M、N的大小關系是M_____N

【答案】>.

【解析】

根據(jù)求差法比較大小,先求出MN的代數(shù)式,即MNx2+60即可推出MN0,即可推出MN

解:∵M3x25x1,N2x25x7,

MN=(3x25x1)﹣(2x25x7)=x2+60,

MN

故答案為:>.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為了抓住市文化藝術節(jié)的商機,某商店決定購進A,B兩種藝術節(jié)紀念品.若購進A種紀念品8件,B種紀念品3件,需要950元;若購進A種紀念品5件,

B種紀念品6件,需要800元.

(1)求購進A,B兩種紀念品每件各需多少元?

(2)若該商店決定購進這兩種紀念品共100件,考慮市場需求和資金周轉,用于購買這100件紀念品的資金不少于7500元,但不超過7650元,那么該商店共有幾種進貨方案?

(3)若銷售每件A種紀念品可獲利潤20元,每件B種紀念品可獲利潤30元,在(2)問的各種進貨方案中,哪一種方案獲利最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】被歷代數(shù)學家尊為算經之首的《九章算術》是中國古代算法的扛鼎之作.《九章算術》中記載:今有五雀、六燕,集稱之衡,雀俱重,燕俱輕.一雀一燕交而處,衡適平.并燕、雀重一斤.問燕、雀一枚各重幾何?

譯文:今有只雀、只燕,分別聚焦而且用衡器稱之,聚在一起的雀重,燕輕.經一只雀、一只燕交換位置而放,重量相等.只雀、只燕重量為斤.問雀、燕每只各重多少斤?

請列方程組解答上面的問題.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知⊙O的半徑是4,OP=5,則點P與⊙O的位置關系是( )

A.P在圓上B.P在圓內C.P在圓外D.不能確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點(–1,–2)在第( )象限.

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在數(shù)1,0,﹣1,|﹣2|中,最小的數(shù)是 .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知|2a+b|與互為相反數(shù).

(1)求2a-3b的平方根;

(2)解關于x的方程ax2+4b-2=0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一副三角板按如圖放置,則下列結論

①如果∠2=30°,則有ACDE;

②∠BAE+CAD =180°;

③如果BCAD,則有∠2=45°;

④如果∠CAD=150°,必有∠4=C;

正確的有( )

A. ①②③ B. ①②④ C. ①③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們知道,如果兩個三角形全等,則它們面積相等,而兩個不全等的三角形,在某些情況下,可通過證明等底等高來說明它們的面積相等.已知△ABC與△DEC是等腰直角三角形,∠ACB=∠DCE=90°,連接AD、BE.

(1)如圖1,當∠BCE=90°時,求證:SACD=SBCE
(2)如圖2,當0°<∠BCE<90°時,上述結論是否仍然成立?如果成立,請證明;如果不成立,說明理由.
(3)如圖3,在(2)的基礎上,作CF⊥BE,延長FC交AD于點G,求證:點G為AD中點.

查看答案和解析>>

同步練習冊答案