【題目】如圖,在平面直角坐標系內(nèi),小正方形網(wǎng)格的邊長為1個單位長度,△ABC的三個頂點的坐標分別為A(-1,3),B(-4,0),C(0,0)
(1)①畫出將△ABC向上平移1個單位長度,再向右平移5個單位長度后得到的△A1B1C1;②畫出將△ABC繞原點O順時針方向旋轉(zhuǎn)90°得到的△A2B2O;
(2)在x軸上存在一點P,滿足點P到點A1與點A2的距離之和最小,請直接寫出P點的坐標.
【答案】
(1)解:如圖,△A1B1C1、△A2B2O為所求作的三角形.
(2)解:如圖,作點A1關(guān)于x軸的對稱點A3 , 連接A2A3 , 交x軸于點P,即P為所求作的點。
∵A1地坐標為(3,1),A3(4,4)
∴A3的坐標為(3,-1)
設(shè)直線A2A3的解析式為y=kx+b
解之:
∴直線A2A3的解析式為y=5x-16.
當y=0時,5x-16=0
解之:x=
故P點的坐標為 .
【解析】(1)分別將點A、B、C向上平移1個單位,再向右平移5個單位,然后順次連接即可;根據(jù)網(wǎng)格結(jié)構(gòu)找出點A、B、C以點O為旋轉(zhuǎn)中心順時針旋轉(zhuǎn)90°后的對應(yīng)點,然后順次連接即可。
(2)利用最短路徑問題解決,首先作A1點關(guān)于x軸的對稱點A3 , 再連接A2A3與x軸的交點就是點P,再求出直線A2A3的解析式,然后求出直線A2A3與x軸的交點坐標即為所求的點P的坐標。
科目:初中數(shù)學 來源: 題型:
【題目】李婷是一位運動鞋經(jīng)銷商,為了解鞋子的銷售情況,隨機調(diào)查了9位學生的鞋子的尺碼,由小到大是:20,21,21,22,22,22,22,23,23.對這組數(shù)據(jù)的分析中,李婷最感興趣的數(shù)據(jù)代表是( )
A.平均數(shù) B.中位數(shù) C.眾數(shù) D.方差
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知tan∠EOF=2,點C在射線OF上,OC=12.點M是∠EOF內(nèi)一點,MC⊥OF于點C,MC=4.在射線CF上取一點A,連結(jié)AM并延長交射線OE于點B,作BD⊥OF于點D.
(1)當AC的長度為多少時,△AMC和△BOD相似;
(2)當點M恰好是線段AB中點時,試判斷△AOB的形狀,并說明理由;
(3)連結(jié)BC.當S△AMC=S△BOC時,求AC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A. 擲一枚均勻的骰子,骰子停止轉(zhuǎn)動后,6點朝上是必然事件
B. 甲、乙兩人在相同條件下各射擊10次,他們的成績平均數(shù)相同,方差分別是S甲2=0.4,S乙2=0.6,則甲的射擊成績較穩(wěn)定
C. “明天降雨的概率為”,表示明天有半天都在降雨
D. 了解一批電視機的使用壽命,適合用普查的方式
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C在⊙O上,CD與⊙O相切,AD∥BC,連結(jié)OD,AC.
(1)求證:∠B=∠DCA;
(2)若 ,OD= , 求⊙O的半徑長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為給人們的生活帶來方便,2017年興化市準備在部分城區(qū)實施公共自行車免費服務(wù).圖1是公共自行車的實物圖,圖2是公共自行車的車架示意圖,點A、D、C、E在同一條直線上,CD=35cm,DF=24cm,AF=30cm,F(xiàn)D⊥AE于點D,座桿CE=15cm,且∠EAB=75°.
(1)求AD的長;
(2)求點E到AB的距離(結(jié)果保留整數(shù)).
(參考數(shù)據(jù):sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列運算正確的是( )
A.5a2+3a2=8a4
B.a3a4=a12
C.(a+2b)2=a2+4b2
D.(a﹣b)(﹣a﹣b)=b2﹣a2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com