精英家教網 > 初中數學 > 題目詳情
根據題意,解答下列問題:
(1)如圖1,已知直線y=2x+4與x軸、y軸分別交于A、B兩點,求線段AB的長;
(2)公式推導:類比(1)的求解過程,P1(x1,y1),P2(x2,y2)是平面直角坐標系內的兩點,如圖2,請你通過構造直角三角形的方法推導公式P1P2=
(x2-x1)2+(y2-y1)2

(3)公式應用:已知:如圖3,A(6,1),B(2,4),問:是否在x軸、y軸上分別存在P、Q兩點,使得四邊形ABQP的周長最短?若存在,求出四邊形ABQP的周長;若不存在,請說明理由.
精英家教網
分析:根據勾股定理,知道兩邊的坐標求出兩邊的長,繼而可以輕松求出第三邊的長度.利用x+y≥2
xy
得當兩項相等時相加最小,類推出當AP=PQ=BQ時取得最小值,利用(2)中所得的公式可以求出.
解答:解:(1)∵直線y=2x+4與x軸、y軸分別交于A、B兩點
∴A點坐標為(-2,0)B點坐標為(0,4)
∴AB的長為
(-2)2+42
=2
5
;精英家教網

(2)如圖過P1、P2分別作兩軸的平行線,交于點A,
則P1A=x2-x1,P2A=y2-y1
∴P1P2=
(x2-x1)2+(y2-y1)2
;

(3)由(2)中得AB=
(6-2)2+(4-1)2
=5
設P、Q兩點的坐標為(x,0),(0,y)
則AP=
(x-6)2+12
PQ=
x2+y2
BQ=
22+(y-4)2

周長為AP+PQ+BQ+AB
要使周長最小,則AP+PQ+BQ應該最小
由公式x2+y2≥2xy,當且僅當x=y時滿足
類推得x2+y2+z2≥xy+xz+yz當且僅當x=y=z時取等號
∴當AP=PQ=BQ時取得最小值
計算得最小值為5+
89
點評:①求邊長可以有很多種求法,其中利用直角三角形是常用的一種,勾股定理或三角函數等.
②合理利用不等式的關系求解.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:044

先閱讀,后解答下列題目:

  甲數比乙數的一半少2,已知甲數等于3,求乙數.

  解:設 乙數為x,根據題意,得x10

  象上面解題的思想方法,我們稱之為方程思想,請用列方程的方法解答下題:

  某學校七(5)班一部分同學進行個人投籃比賽,受污損的下表記錄了在規(guī)定時間內投進n個球的人數分布情況:

進球數n

0

1

2

3

4

5

投進n個球的人數

1

2

7

   

2

1)同時,已知進3個球的人數是進4個球人數的3倍,并且進球3個或3個以上的人平均投進3.5個球,問投進3個球與4個球的人各有多少人?

(2)根據題目,仿照(1),編一道應用題.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

根據題意,解答下列問題:
(1)如圖1,已知直線y=2x+4與x軸、y軸分別交于A、B兩點,求線段AB的長;
(2)公式推導:類比(1)的求解過程,P1(x1,y1),P2(x2,y2)是平面直角坐標系內的兩點,如圖2,請你通過構造直角三角形的方法推導公式P1P2=數學公式;
(3)公式應用:已知:如圖3,A(6,1),B(2,4),問:是否在x軸、y軸上分別存在P、Q兩點,使得四邊形ABQP的周長最短?若存在,求出四邊形ABQP的周長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2010年福建省莆田市中考數學仿真模擬試卷(三)(解析版) 題型:解答題

根據題意,解答下列問題:
(1)如圖1,已知直線y=2x+4與x軸、y軸分別交于A、B兩點,求線段AB的長;
(2)公式推導:類比(1)的求解過程,P1(x1,y1),P2(x2,y2)是平面直角坐標系內的兩點,如圖2,請你通過構造直角三角形的方法推導公式P1P2=;
(3)公式應用:已知:如圖3,A(6,1),B(2,4),問:是否在x軸、y軸上分別存在P、Q兩點,使得四邊形ABQP的周長最短?若存在,求出四邊形ABQP的周長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:模擬題 題型:解答題

根據題意,解答下列問題:
(1)如圖1,已知直線y=2x+4與x軸、y軸分別交于A、B兩點,求線段AB的長。
(2)公式推導:類比(1)的求解過程,P1(x1,y1),P2(x2,y2)是平面直角坐標系內的兩點,如圖2,請你通過構造直角三形的方法推導公式P1 P2=
(3)公式應用:已知:如圖3,A(6,1),B(2,4),問:是否在x軸、y軸上分別存在P、Q兩點,使得四邊形ABQP的周長最短?若存在,求出四邊形ABQP的周長,若不存在,請說明理由。

查看答案和解析>>

同步練習冊答案