精英家教網 > 初中數學 > 題目詳情
已知二次函數y=ax2(a≥1)的圖象上兩點A,B的橫坐標分別為-1,2,O是坐標原點,如果△AOB是直角三角形,則△AOB的周長為______.
如圖,作AF⊥OD,BD⊥OF,AE⊥BD,
點A(-1,a),B(2,4a),由勾股定理得,
OA=
a2+1
,OB=
4+16a2
,
∵AE=1+2=3,BE=BD-DE=4a-a=3a,
AB=
AE2+BE2
=
9+9a2

因為a≥1,故OA邊最小,不能為斜邊;
(1)若OB為斜邊,則OB2=OA2+AB2,
即4+16a2=a2+1+9+9a2
解得a1=1,a2=-1(不合題意,舍去),
△AOB的周長=
2
+
20
+
18
=4
2
+2
5


(2)若AB為斜邊,則AB2=OA2+OB2
即9+9a2=a2+1+4+16a2,
解得a=±
2
2
(a≥1,不合題意,舍去);
綜上所知,△AOB的周長為(4
2
+2
5
).
故填:(4
2
+2
5
).
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,以點C(1,1)為圓心,2為半徑作圓,交x軸于A,B兩點.
(1)求出A,B兩點的坐標;
(2)有一開口向下的拋物線y=a(x-h)2+k經過點A,B,且其頂點在⊙C上.試確定此拋物線的表達式.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知拋物線C1如圖1所示,現將C1以y軸為對稱軸進行翻折,得到新的拋物線C2
(1)求拋物線C2的解析式;
(2)在圖1中,將△OAC補成矩形,使△OAC的兩個頂點成為矩形一邊的兩個頂點,第三個頂點落在矩形這一邊的對邊上,請直接(不需要寫過程)寫出矩形的周長;
(3)如圖2,若拋物線C1的頂點為M,點P為線段BM上一動點(不與點M、B重合),PN⊥x軸于N,請求出PC+PN的最小值.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知拋物線y=ax2+bx(a≠0)的頂點在直線y=-
1
2
x-1
上,且過點A(4,0).
(1)求這個拋物線的解析式;
(2)設拋物線的頂點為P,是否在拋物線上存在一點B,使四邊形OPAB為梯形?若存在,求出點B的坐標;若不存在,請說明理由;
(3)設點C(1,-3),請在拋物線的對稱軸確定一點D,使|AD-CD|的值最大,請直接寫出點D的坐標.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,已知二次函數y=(x-m)2-4m2(m>0)的圖象與x軸交于A、B兩點.
(1)寫出A、B兩點的坐標(坐標用m表示);
(2)若二次函數圖象的頂點P在以AB為直徑的圓上,求二次函數的解析式;
(3)在(2)的基礎上,設以AB為直徑的⊙M與y軸交于C、D兩點,求CD的長.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,已知一次函數y=-
3
4
x+6
與坐標軸交于A、B點,AE是∠BAO的平分線,過點B作BE⊥AE,垂足為E,過E作x軸的垂線,垂足為M.
(1)求證:M為OB的中點;
(2)求以E為頂點,且經過點A的拋物線解析式.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,一名男生推鉛球,鉛球行進高度y(單位:m)與水平距離x(單位:m)之間的關系是y=-
1
12
x2+
2
3
x+
5
3
.則他將鉛球推出的距離是______m.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

武漢銀河影院對去年賀歲片《非誠勿攏》的售票情況進行調查:若票價定為20元/張,則每場可賣電影票400張,若單價每漲1元,每場就少售出8張,設每張票漲價x元(x為正整數).
(1)求每場的收入y與x的函數關系式;
(2)設某場的收入為9000元,此收入是否是最大收入?請說明理由;
(3)請借助圖象分析,售價在什么范圍內每趟的總收入不低于8000元?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知:函數y=-
1
4
x2+x+a的圖象的最高點在x軸上.
(1)求a;
(2)如圖所示,設二次函數y=-
1
4
x2+x+a圖象與y軸的交點為A,頂點為B,P為圖象上的一點,若以線段PB為直徑的圓與直線AB相切于點B,求P點的坐標;
(3)在(2)中,若圓與x軸另一交點C關于直線PB的對稱點為M,試探索點M是否在拋物線y=-
1
4
x2+x+a上?若在拋物線上,求出M點的坐標;若不在,請說明理由.

查看答案和解析>>

同步練習冊答案