(2008•朝陽區(qū)二模)已知一個等邊三角形的邊長為2,分別以它的三個頂點為圓心,邊長為半徑畫弧,得到右圖,那么圖中所有的弧長的和是( )

A.4π
B.6π
C.8π
D.10π
【答案】分析:根據(jù)弧長計算公式l=,首先確定n與r的值,因為弧比較多可以分為9部分,此時n=60°,r=2,代入公式即可求出.
解答:解:因為弧比較多可以分為9部分,如圖所示
此時n=60°,r=2,代入公式得:
弧長計算公式l===,
∴弧長的和是9×=6π,
故答案為:6π.
點評:此題主要考查了弧長的計算公式的應用,解決問題的關鍵是發(fā)現(xiàn)弧的特殊性,分解為9部分計算比較簡單.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2008•朝陽區(qū)二模)如圖,△AOC在平面直角坐標系中,∠AOC=90°,且O為坐標原點,點A、C分別在坐標軸上,AO=4,OC=3,將△AOC繞點C按逆時針方向旋轉,旋轉后的三角形記為△CA′O′.
(1)當CA邊落在y軸上(其中旋轉角為銳角)時,一條拋物線經過A、C兩點且與直線AA′相交于x軸下方一點D,如果S△AOD=9,求這條拋物線的解析式;
(2)繼續(xù)旋轉△CA′O′,當以CA′為直徑的⊙P與(1)中拋物線的對稱軸相切時,圓心P是否在拋物線上,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年重慶市綦江縣趕水鎮(zhèn)中中考數(shù)學模擬試卷(一)(解析版) 題型:解答題

(2008•朝陽區(qū)二模)如圖,△AOC在平面直角坐標系中,∠AOC=90°,且O為坐標原點,點A、C分別在坐標軸上,AO=4,OC=3,將△AOC繞點C按逆時針方向旋轉,旋轉后的三角形記為△CA′O′.
(1)當CA邊落在y軸上(其中旋轉角為銳角)時,一條拋物線經過A、C兩點且與直線AA′相交于x軸下方一點D,如果S△AOD=9,求這條拋物線的解析式;
(2)繼續(xù)旋轉△CA′O′,當以CA′為直徑的⊙P與(1)中拋物線的對稱軸相切時,圓心P是否在拋物線上,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年河北省承德市承德縣中考數(shù)學模擬試卷(一)(解析版) 題型:解答題

(2008•朝陽區(qū)二模)如圖,△AOC在平面直角坐標系中,∠AOC=90°,且O為坐標原點,點A、C分別在坐標軸上,AO=4,OC=3,將△AOC繞點C按逆時針方向旋轉,旋轉后的三角形記為△CA′O′.
(1)當CA邊落在y軸上(其中旋轉角為銳角)時,一條拋物線經過A、C兩點且與直線AA′相交于x軸下方一點D,如果S△AOD=9,求這條拋物線的解析式;
(2)繼續(xù)旋轉△CA′O′,當以CA′為直徑的⊙P與(1)中拋物線的對稱軸相切時,圓心P是否在拋物線上,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年重慶市綦江縣趕水鎮(zhèn)中中考數(shù)學模擬試卷(一)(解析版) 題型:解答題

(2008•朝陽區(qū)二模)已知:如圖,在梯形ABCD中,AD∥BC,BC=3AD.
(1)如圖①,連接AC,如果三角形ADC的面積為6,求梯形ABCD的面積;
(2)如圖②,E是腰AB上一點,連接CE,設△BCE和四邊形AECD的面積分別為S1和S2,且2S1=3S2,求的值;
(3)如圖③,AB=CD,如果CE⊥AB于點E,且BE=3AE,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:2011年重慶市綦江縣趕水鎮(zhèn)中中考數(shù)學模擬試卷(一)(解析版) 題型:填空題

(2008•朝陽區(qū)二模)已知兩圓的半徑分別為3cm和4cm,如果這兩個圓的圓心距為10cm,那么這兩個圓的位置關系是    

查看答案和解析>>

同步練習冊答案