【題目】如圖,在△ABC中,以AB為直徑的⊙O交BC于點D,交CA的延長線于點E,過點D作DH⊥AC于點H,且DH是⊙O的切線,連接DE交AB于點F.
(1)求證:DC=DE;
(2)若AE=1,,求⊙O的半徑.
【答案】(1)見解析;(2).
【解析】
(1)連接OD,由DH⊥AC,DH是⊙O的切線,然后由平行線的判定與性質可證∠C=∠ODB,由圓周角定理可得∠OBD=∠DEC,進而∠C=∠DEC,可證結論成立;
(2)證明△OFD∽△AFE,根據(jù)相似三角形的性質即可求出圓的半徑.
(1)證明:連接OD,
由題意得:DH⊥AC,由且DH是⊙O的切線,∠ODH=∠DHA=90°,
∴∠ODH=∠DHA=90°,
∴OD∥CA,
∴∠C=∠ODB,
∵OD=OB,
∴∠OBD=∠ODB,
∴∠OBD=∠C,
∵∠OBD=∠DEC,
∴∠C=∠DEC,
∴DC=DE;
(2)解:由(1)可知:OD∥AC,
∴∠ODF=∠AEF,
∵∠OFD=∠AFE,
∴△OFD∽△AFE,
∴,
∵AE=1,
∴OD=,
∴⊙O的半徑為.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,點D是AB邊的中點,過點D作邊AB的垂線l,E是l上任意一點,且AC=5,BC=8,則△AEC的周長最小值為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形A1B1C1D1的面積為4,順次連結各邊中點得到四邊形A2B2C2D2,再順次連結四邊形A2B2C2D2四邊中點得到四邊形A3B3C3D3,依此類推,則四邊形AnBnCnDn的面積是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店將每件進價為80元的某種商店按每件110元出售,每天可售出100件.該商店想通過降低售價、增加銷售量的方法來提高利潤.經(jīng)市場調查,發(fā)現(xiàn)這種商品每件每降價5元,每天的銷售量可增加50件.設商品降價x元,每天銷售該商品獲得的利潤為y元.
(1)求y(元)關于x(元)的函數(shù)關系式,并寫出x的取值范圍.
(2)求當x取何值時y最大?并求出y的最大值.
(3)若要是每天銷售利潤為3750元,且盡可能最大的向顧客讓利,應將該商品降價多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D為BC邊上一點,∠B=30°∠DAB=45°.(1)求∠DAC的度數(shù);(2)請說明:AB=CD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦BC=2cm,F(xiàn)是弦BC的中點,∠ABC=60°.若動點E以2cm/s的速度從A點出發(fā)沿著A→B→A方向運動,設運動時間為t(s)(0≤t<3),連接EF,當△BEF是直角三角形時,t(s)的值為【 】
A. B.1 C.或1 D.或1或
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,甲、乙兩人以相同路線前往距離單位10km的培訓中心參加學習,圖中1, 分別表示甲、乙兩人前往目的地所走的路程S(千米)隨時間(分)變化的函數(shù)圖象,以下說法:①甲比乙提前12分鐘到達;②甲的平均速度為15千米/小時;③甲、乙相遇時,乙走了6千米;④乙出發(fā)6分鐘后追上甲,其中正確的是( )
A.①②B.③④C.①③④D.②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我國很多城市水資源缺乏,為了加強居民的節(jié)水意識,某市制定了每月用水4噸以內(包括4噸)和用水4噸以上收費標準(收費標準:每噸水的價格)某用戶每月應交水費y(元)與用水量x(噸)之間關系的圖象如圖:
(1)說出自來水公司在這兩個用水范圍內的收費標準;
(2)當x>4時,求因變量y與自變量x之間的關系式;
(3)若某用戶該月交水費26元,求他用了多少噸水?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,Rt△ABC的三個頂點分別是A(-3,2)、B(0,4)、C(0,2),
(1)畫出△ABC關于點C成中心對稱的△A1B1C;
(2)平移△ABC:若點A的對應點A2的坐標為(0,-4),畫出平移后對應的△A2B2C2;
(3)△A1B1C和△A2B2C2關于某一點成中心對稱,則對稱中心的坐標為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com