如圖,在△ABC中,∠BAC=30°,以AB為直徑的⊙O經(jīng)過(guò)點(diǎn)C.過(guò)點(diǎn)C作⊙O的切線交AB的延長(zhǎng)線于點(diǎn)P.點(diǎn)D為圓上一點(diǎn),且,弦AD的延長(zhǎng)線交切線PC于點(diǎn)E,連接BC.
(1)判斷OB和BP的數(shù)量關(guān)系,并說(shuō)明理由;
(2)若⊙O的半徑為2,求AE的長(zhǎng).
(1)OB=BP,理由見(jiàn)解析(2)3
【解析】解:(1)OB=BP。理由如下:連接OC,
∵PC切⊙O于點(diǎn)C,∴∠OCP=90°。
∵OA=OC,∠OAC=30°,∴∠OAC=∠OCA=30°。
∴∠COP=60°!唷螾=30°。
在Rt△OCP中,OC=OP=OB=BP。
(2)由(1)得OB=OP。
∵⊙O的半徑是2,∴AP=3OB=3×2=6。
∵,∴∠CAD=∠BAC=30°。∴∠BAD=60°。
∵∠P=30°,∴∠E=90°。
在Rt△AEP中,AE=AP=×6=3。
(1)首先連接OC,由PC切⊙O于點(diǎn)C,可得∠OCP=90°,又由∠BAC=30°,即可求得∠COP=60°,∠P=30°,然后根據(jù)直角三角形中30°角所對(duì)的直角邊等于斜邊的一半,證得OB=BP。
(2)由(1)可得OB=OP,即可求得AP的長(zhǎng),又由,即可得∠CAD=∠BAC=30°,從而求得∠E=90°,從而在Rt△AEP中求得答案。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
A、
| ||||
B、(
| ||||
C、
| ||||
D、
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com