精英家教網 > 初中數學 > 題目詳情
如圖1,拋物線y=-x2+bx+c的頂點為Q,與x軸交于A(-1,0)、B(5,0)兩點,與y軸交于點C.
(1)求拋物線的解析式及其頂點Q的坐標;
(2)在該拋物線的對稱軸上求一點P,使得△PAC的周長最小,請在圖中畫出點P的位置,并求點P的坐標;
(3)如圖2,若點D是第一象限拋物線上的一個動點,過D作DE⊥x軸,垂足為E.
①有一個同學說:“在第一象限拋物線上的所有點中,拋物線的頂點Q與x軸相距最遠,所以當點D運動至點Q時,折線D-E-O的長度最長”,這個同學的說法正確嗎?請說明理由.
②若DE與直線BC交于點F.試探究:四邊形DCEB能否為平行四邊形?若能,請直接寫出點D的坐標;若不能,請簡要說明理由.
(1)y-(x-2)2+9,Q(2,9);(2)(2,3);(3)

試題分析:(1)將A(-1,0)、B(5,0)分別代入y=-x2+bx+c中即可確定b、c的值,然后配方后即可確定其頂點坐標;
(2)連接BC,交對稱軸于點P,連接AP、AC.求得C點的坐標后然后確定直線BC的解析式,最后求得其與x=2與直線BC的交點坐標即為點P的坐標;
(3)①設D(t,-t2+4t+5),設折線D-E-O的長度為L,求得L的最大值后與當點D與Q重合時L=9+2=11<相比較即可得到答案;
②假設四邊形DCEB為平行四邊形,則可得到EF=DF,CF=BF.然后根據DE∥y軸求得DF,得到DF>EF,這與EF=DF相矛盾,從而否定是平行四邊形.
(1)將A(-1,0)、B(5,0)分別代入y=-x2+bx+c中,得
,解得
∴y=-x2+4x+5.
∵y=-x2+4x+5=-(x-2)2+9,
∴Q(2,9).

(2)如圖1,連接BC,交對稱軸于點P,連接AP、AC.
∵AC長為定值,∴要使△PAC的周長最小,只需PA+PC最。
∵點A關于對稱軸x=2的對稱點是點B(5,0),拋物線y=-x2+4x+5與y軸交點C的坐標為(0,5).
∴由幾何知識可知,PA+PC=PB+PC為最小.
設直線BC的解析式為y=kx+5,將B(5,0)代入5k+5=0,得k=-1,
∴y=-x+5,
∴當x=2時,y=3,
∴點P的坐標為(2,3).
(3)①這個同學的說法不正確.
∵設D(t,-t2+4t+5),設折線D-E-O的長度為L,則L=?t2+4t+5+t=?t2+5t+5=?(t?)2+,
∵a<0,
∴當t=時,L最大值=
而當點D與Q重合時,L=9+2=11<,
∴該該同學的說法不正確.
②四邊形DCEB不能為平行四邊形.
如圖2,若四邊形DCEB為平行四邊形,則EF=DF,CF=BF.
∵DE∥y軸,
,即OE=BE=2.5.
當xF=2.5時,yF=-2.5+5=2.5,即EF=2.5;
當xD=2.5時,yD=?(2.5?2)2+9=8.75,即DE=8.75.
∴DF=DE-EF=8.75-2.5=6.25>2.5.即DF>EF,這與EF=DF相矛盾,
∴四邊形DCEB不能為平行四邊形.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

如圖1,拋物線軸交于兩點,與軸交于點,連結AC,若
(1)求拋物線的解析式;
(2)拋物線對稱軸上有一動點P,當時,求出點的坐標;
(3)如圖2所示,連結是線段上(不與、重合)的一個動點.過點作直線,交拋物線于點,連結、,設點的橫坐標為.當t為何值時,的面積最大?最大面積為多少?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知二次函數.
(1)用配方法求其圖象的頂點C的坐標,并描述改函數的函數值隨自變量的增減而增減的情況;
(2)求函數圖象與x軸的交點A,B的坐標,及△ABC的面積.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,已知拋物線y=﹣x2+bx+4與x軸相交于A、B兩點,與y軸相交于點C,若已知A點的坐標為A(﹣2,0).
(1)求拋物線的解析式及它的對稱軸;
(2)求點C的坐標,連接AC、BC并求線段BC所在直線的解析式;
(3)在拋物線的對稱軸上是否存在點Q,使△ACQ為等腰三角形?若存在,求出符合條件的Q點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,拋物線經過A(-1,0),B(5,0),C(0,?)三點.
(1)求拋物線的解析式;
(2)在拋物線的對稱軸上有一點P,使PA+PC的值最小,求點P的坐標;
(3)點M為x軸上一動點,在拋物線上是否存在一點N,使以A,C,M,N四點構成的四邊形為平行四邊形?若存在,求點N的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

將一條拋物線向左平移2個單位后得到了y=2x2的函數圖象,則這條拋物線是(   )  
A.y=2x2+2B.y=2x2-2C.y=2(x-2)2D.y=2(x+2)2

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,直角梯形OABC中,AB∥OC,點A坐標為(0,6),點C坐標為(3,0),BC=,一拋物線過點A、B、 C.
(1)填空:點B的坐標為   ;
(2)求該拋物線的解析式;
(3)作平行于x軸的直線與x軸上方的拋物線交于點E 、F,以EF為直徑的圓恰好與x軸相切,求該圓的半徑.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知:二次函數中的滿足下表:

……

0
1
2
3
……

……
0




……
(1)求的值;
(2)根據上表求時的的取值范圍;
(3)若兩點都在該函數圖象上,且,試比較的大小.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

對于二次函數y=2(x+1)(x-3),下列說法正確的是( )
A.圖象的開口向下
B.當x>1時,y隨x的增大而減小
C.當x<1時,y隨x的增大而減小
D.圖象的對稱軸是直線x=-1

查看答案和解析>>

同步練習冊答案