【題目】先化簡,再求值.
⑴(x+2)2-(x+1)(x-1), 再選取一個(gè)你喜歡的數(shù)代入x求值.
⑵,其中.
【答案】(1)原式= 4x+5, 當(dāng)x=0時(shí),原式=5;
(2)原式==-x+y,當(dāng)x=-2,y=時(shí),原式=2+=
【解析】
(1)原式利用完全平方公式,平方差公式計(jì)算,去括號(hào)合并得到最簡結(jié)果,把x=0代入計(jì)算即可求出值.
(2)先利用完全平方公式和平方差公式計(jì)算,再去括號(hào)、合并同類項(xiàng)即可化簡原式,繼而將x、y的值代入計(jì)算.
解:(1)原式=x2+4x+4-x2+1=4x+5,
當(dāng)x=0時(shí),原式=5;
(2)原式=(x2+4xy+4y2-3x2-2xy+y2-5y2)÷(2x)=(-2x2+2xy) ÷(2x)=-x+y,
當(dāng)x=-2,y=時(shí),原式=2+=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形 ABCD 中,E、F、G、H 分別為各邊的中點(diǎn),順次連 結(jié) E、F、G、H,把四邊形 EFGH 稱為中點(diǎn)四邊形.連結(jié) AC、BD,容易證明:中點(diǎn) 四邊形 EFGH 一定是平行四邊形.
(1)如果改變原四邊形 ABCD 的形狀,那么中點(diǎn)四邊形的形狀也隨之改變,通過探索 可以發(fā)現(xiàn):當(dāng)四邊形 AB CD 的對角線滿足 AC=BD 時(shí),四邊形 EFGH 為菱形;當(dāng)四邊形ABCD 的對角線滿足 時(shí),四邊形 EFGH 為矩形;當(dāng)四邊形 ABCD 的對角線滿足 時(shí),四邊形 EFGH 為正方形.
(2)試證明:S△AEH+S△CFG= S□ ABCD
(3)利用(2)的結(jié)論計(jì)算:如果四邊形 ABCD 的面積為 2012, 那么中點(diǎn)四邊形 EFGH 的面積是 (直接將結(jié)果填在 橫線上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB=AC,BE⊥AC于點(diǎn)E,CF⊥AB于點(diǎn)F,BE,CF交于點(diǎn)D,則下列結(jié)論中不正確的是( )
A. △ABE≌△ACF B. 點(diǎn)D在∠BAC的平分線上
C. △BDF≌△CDE D. D是BE的中點(diǎn)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】[ 問題提出 ]
一個(gè)邊長為 ncm(n3)的正方體木塊,在它的表面涂上顏色,然后切成邊長為1cm的小正方體木塊,沒有涂上顏色的有多少塊?只有一面涂上顏色的有多少塊?有兩面涂上顏色的有多少塊?有三面涂上顏色的多少塊?
[ 問題探究 ]
我們先從特殊的情況入手
(1)當(dāng)n=3時(shí),如圖(1)
沒有涂色的:把這個(gè)正方形的表層“剝?nèi)?/span>”剩下的正方體,有1×1×1=1個(gè)小正方體;
一面涂色的:在面上,每個(gè)面上有1個(gè),共有6個(gè);
兩面涂色的:在棱上,每個(gè)棱上有1個(gè),共有12個(gè);
三面涂色的:在頂點(diǎn)處,每個(gè)頂點(diǎn)處有1個(gè),共有8個(gè).
(2)當(dāng)n=4時(shí),如圖(2)
沒有涂色的:把這個(gè)正方形的表層“剝?nèi)?/span>”剩下的正方體,有2×2×2=8個(gè)小正方體:
一面涂色的:在面上,每個(gè)面上有4個(gè),正方體共有 個(gè)面,因此一面涂色的共有 個(gè);
兩面涂色的:在棱上,每個(gè)棱上有2個(gè),正方體共有 條棱,因此兩面涂色的共有 個(gè);
三面涂色的:在頂點(diǎn)處,每個(gè)頂點(diǎn)處有1個(gè),正方體共有 個(gè)頂點(diǎn),因此三面涂色的共有 個(gè)…
[ 問題解決 ]
一個(gè)邊長為ncm(n3)的正方體木塊,沒有涂色的:把這個(gè)正方形的表層“剝?nèi)?/span>”剩下的正方體,有______個(gè)小正方體;一面涂色的:在面上,共有______個(gè); 兩面涂色的:在棱上,共有______個(gè); 三面涂色的:在頂點(diǎn)處,共______個(gè)。
[ 問題應(yīng)用 ]
一個(gè)大的正方體,在它的表面涂上顏色,然后把它切成棱長1cm的小正方體,發(fā)現(xiàn)有兩面涂色的小正方體有96個(gè),請你求出這個(gè)大正方體的體積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線y=﹣x+2與x軸、y軸分別交于點(diǎn)A、點(diǎn)C,拋物線經(jīng)過點(diǎn)A、點(diǎn)C,且與x軸的另一個(gè)交點(diǎn)為B(﹣1,0).
(1)求拋物線的解析式;
(2)點(diǎn)D為第一象限內(nèi)拋物線上的一動(dòng)點(diǎn).
①如圖1,若CD=AD,求點(diǎn)D的坐標(biāo);
②如圖2,BD與AC交于點(diǎn)E,求S△CDE:S△CBE的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA、PB分別與⊙O相切于點(diǎn)A、B,若∠P=50°,則∠C的值是( )
A. 50°B. 55°C. 60°D. 65°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)三位自然數(shù)m,將它任意兩個(gè)數(shù)位上的數(shù)字對調(diào)后得一個(gè)首位不為0 的新三位自然數(shù) m’( m’可以與m相同),記m’=,在 m’ 所有的可能情況中,當(dāng)|a+2b-c| 最小時(shí),我們稱此時(shí)的m’ 是m 的“幸福美滿數(shù)”,并規(guī)定K (m) = a2 +2b2 -c2.例如:318按上述方法可得新數(shù)有:381、813 、138 ;因?yàn)?/span>|3+28-1|= 18 ,|8+ 21-3|=7,|1 +23-8|=1,1< 7<18 ,所以138 是318的“幸福美滿數(shù)”,K(318)=|12+232-82|=-45.
(1)若三位自然數(shù)t的百位上的數(shù)字與十位上的數(shù)字都為n(1≤n ≤ 9 ,n為自然數(shù)),個(gè)位上的數(shù)字為0 ,求證:K (t )= 0;
(2)設(shè)三位自然數(shù)s=100+10x + y(1≤ x ≤ 9,1≤y≤9, ,x y 為自然數(shù)) ,且x<y .交換其個(gè)位與十位上的數(shù)字得到新數(shù)s’,若19s+8s’=3888,那么我們稱s為“夢
想成真數(shù)”,求所有“夢想成真數(shù)”中K (s )的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】公園門票價(jià)格規(guī)定如下表:
購票張數(shù) | 1~50張 | 51~100張 | 100張以上 |
每張票的價(jià)格 | 15元 | 13元 | 11元 |
某校七年級(jí)(1)(2)兩個(gè)班共102人去游園,其中(1)班超過40人,不足50人,經(jīng)估算,如果兩個(gè)班都以班為單位購票,則一共應(yīng)付1422元.問:
(1)兩個(gè)班各有多少學(xué)生?
(2)如果兩個(gè)班聯(lián)合起來,作為一個(gè)團(tuán)體購票,可比兩個(gè)班都以班為單位購票省多少元錢?
(2)如果七年級(jí)(1)班單獨(dú)組織去游園,作為組織者的你如何購票才最省錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,它表示甲乙兩人從同一個(gè)地點(diǎn)出發(fā)后的情況。到10:00時(shí),甲大約走了13千米。根據(jù)圖象回答:
(1)甲是幾點(diǎn)鐘出發(fā)?
(2)乙是幾點(diǎn)鐘出發(fā),到十點(diǎn)時(shí),他大約走了多少千米?
(3)到10:00為止,哪個(gè)人的速度快?
(4)兩人在途中有幾次相遇?分別在幾點(diǎn)鐘相遇?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com