一小球被拋出后,距離地面的高度h(米)和飛行時(shí)間t(秒)滿足下列函數(shù)關(guān)系式:,則小球距離地面的最大高度是
A.1米B.5米C.6米D.7米
C.

試題分析:首先理解題意,先把實(shí)際問(wèn)題轉(zhuǎn)化成數(shù)學(xué)問(wèn)題后,知道解此題就是求出h=-5(t-1)2+6的頂點(diǎn)坐標(biāo)即可.
∵高度h和飛行時(shí)間t 滿足函數(shù)關(guān)系式:h=-5(t-1)2+6,
∴當(dāng)t=1時(shí),小球距離地面高度最大,
∴h=-5×(1-1)2+6=6米,
故選C.
考點(diǎn): 二次函數(shù)的應(yīng)用
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,二次函數(shù)y=ax2+bx+c圖象的一部分,其中對(duì)稱軸為x=﹣1,且過(guò)(﹣3,0),下列說(shuō)法:①abc<0,②2a<b,③4a+2b+c=0,④若(﹣5,y1),(5,y2)是拋物線上的點(diǎn),則y1<y2,其中說(shuō)法正確的有( 。
A.4個(gè) B.3個(gè) C.2個(gè) D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知拋物線的表達(dá)式是,那么它的頂點(diǎn)坐標(biāo)是           

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

拋物線y=x2+bx+c圖象向右平移2個(gè)單位再向下平移3個(gè)單位,所得圖象的解析式為y=x2﹣2x﹣3,則b、c的值為(  )
A.b="2,c=2" B.b=2,c=0
C.b=﹣2,c=﹣1D.b=﹣3,c="2"

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知二次函數(shù)y=ax2+bx+c的圖象的頂點(diǎn)為M(2,1),且過(guò)點(diǎn)N(3,2).

(1)求這個(gè)二次函數(shù)的關(guān)系式;
(2)若一次函數(shù)y=-x-4的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,P為拋物線上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作PQ∥y軸交直線AB于點(diǎn)Q,以PQ為直徑作圓交直線AB于點(diǎn)D.設(shè)點(diǎn)P的橫坐標(biāo)為n,問(wèn):當(dāng)n為何值時(shí),線段DQ的長(zhǎng)取得最小值?最小值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知直線分別與y軸、x軸相交于A、B兩點(diǎn),與二次函數(shù)的圖像交于A、C兩點(diǎn).

(1)當(dāng)點(diǎn)C坐標(biāo)為(,)時(shí),求直線AB的解析式;
(2)在(1)中,如圖,將△ABO沿y軸翻折180°,若點(diǎn)B的對(duì)應(yīng)點(diǎn)D恰好落在二次函數(shù)的圖像上,求點(diǎn)D到直線AB的距離;
(3)當(dāng)-1≤x≤1時(shí),二次函數(shù)有最小值-3,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

二次函數(shù)y=ax+bx+c的圖像如圖所示,則不等式ax+bx+c>0的解集是            

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知拋物線y=a-3x+1與x軸有交點(diǎn),則a的取值范圍是(  。
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

.如圖,已知拋物線y1=-2x2+2,直線y2=2x+2,當(dāng)x任取一值時(shí),x對(duì)應(yīng)的函數(shù)值分別為y1、y2.若y1≠y2,取y1、y2中的較小值記為M;若y1=y2,記M=y1=y2.例如:當(dāng)x=1時(shí),y1=0,y2=4,y1<y2,此時(shí)M="0." 下列判斷:
①當(dāng)x>0時(shí),y1>y2;
②當(dāng)x<0時(shí),x值越大,M值越小;
③使得M大于2的x值不存在;
④使得M=1的x值是.其中正確的是( )
A.①②B.①④C.②③ D.③④

查看答案和解析>>

同步練習(xí)冊(cè)答案