【題目】如圖,已知點(diǎn)D在⊙O的直徑AB延長(zhǎng)線上,點(diǎn)C在⊙O上,過(guò)點(diǎn)D作ED⊥AD,與AC的延長(zhǎng)線相交于點(diǎn)E,且CD=DE.
(1)求證:CD為⊙O的切線;
(2)若AB=12,且BC=CE時(shí),求BD的長(zhǎng).
【答案】(1)詳見(jiàn)解析;(2)6-6.
【解析】
(1)連結(jié)0C,由AB為直徑,得到∠ACB=90°,求得∠E=∠ABC,根據(jù)等腰三角形的性質(zhì)得到∠ABC=∠OCB,等量代換得到∠E=∠OCB,推出OC⊥CD,于是得到結(jié)論;
(2)證明△OBC≌△DCE(ASA),得到OC=CD=6,根據(jù)勾股定理求出斜邊的長(zhǎng),進(jìn)而可求出BD的長(zhǎng).
(1)證明:連接OC,
∵AB為直徑,
∴∠ACB=90°,
∴∠BCD+∠ECD=90°,
在Rt△ADE和Rt△ABC中,∠E=90°-∠A,∠ABC=90°-∠A,
∴∠E=∠ABC,
∵OB=OC,
∴∠ABC=∠OCB,
∴∠E=∠OCB,
又∵CD=DE,
∴∠E=∠ECD,
∴∠OCB=∠ECD,
∴∠OCB+∠BCD=90°,即OC⊥CD,
∴CD為⊙O的切線.
(2)由(1)知,∠OBC=∠OCB=∠DCE=∠E,
在△OBC和△DCE中,
∴△OBC≌△DCE(ASA),
∴OC=CD=6,
Rt△OCD中,OC=CD=6,∠OCD=90°,
∴
即
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,,的平分線與的垂直平分線交于點(diǎn),的延長(zhǎng)線于點(diǎn),于點(diǎn).
(1)求證:;
(2)求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若關(guān)于x的方程的解為整數(shù),且不等式組無(wú)解,則這樣的非負(fù)整數(shù)a有( 。
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)問(wèn)題背景:如圖1,在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分別是BC,CD上的點(diǎn),且∠EAF=60°,請(qǐng)?zhí)骄繄D中線段BE,EF,FD之間的數(shù)量關(guān)系是什么?
小明探究此問(wèn)題的方法是:延長(zhǎng)FD到點(diǎn)G,使DG=BE,連結(jié)AG.先證明△ABE≌△ADG,得AE=AG;再由條件可得∠EAF=∠GAF,證明△AEF≌△AGF,進(jìn)而可得線段BE,EF,FD之間的數(shù)量關(guān)系是 .
(2)拓展應(yīng)用:
如圖2,在四邊形ABCD中,AB=AD,∠B+∠D=180°.E,F分別是BC,CD上的點(diǎn),且∠EAF=∠BAD.問(wèn)(1)中的線段BE,EF,FD之間的數(shù)量關(guān)系是否還成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是以O為圓心的半圓的直徑,半徑CO⊥AO,點(diǎn)M是上的動(dòng)點(diǎn),且不與點(diǎn)A、C、B重合,直線AM交直線OC于點(diǎn)D,連結(jié)OM與CM.
(1)若半圓的半徑為10.
①當(dāng)∠AOM=60°時(shí),求DM的長(zhǎng);
②當(dāng)AM=12時(shí),求DM的長(zhǎng).
(2)探究:在點(diǎn)M運(yùn)動(dòng)的過(guò)程中,∠DMC的大小是否為定值?若是,求出該定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在下列的網(wǎng)格圖中.每個(gè)小正方形的邊長(zhǎng)均為1個(gè)單位,在Rt△ABC中,∠C=90°,AC=3,BC=4.
(1)試在圖中作出△ABC以A為旋轉(zhuǎn)中心,沿順時(shí)針?lè)较蛐D(zhuǎn)90°后的圖形△AB1C1;
(2)若點(diǎn)B的坐標(biāo)為(-3,5),試在圖中畫(huà)出直角坐標(biāo)系,并標(biāo)出A、C兩點(diǎn)的坐標(biāo);
(3)根據(jù)(2)中的坐標(biāo)系作出與△ABC關(guān)于原點(diǎn)對(duì)稱的圖形△A2B2C2,并標(biāo)出B2、C2兩點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形網(wǎng)格中的每個(gè)小正方形的邊長(zhǎng)都是1,每個(gè)小格的頂點(diǎn)叫做格點(diǎn).
(1)在圖1中以格點(diǎn)為頂點(diǎn)畫(huà)一個(gè)面積為10的正方形;
(2)在圖2中以格點(diǎn)為頂點(diǎn)畫(huà)一個(gè)三角形,使三角形三邊長(zhǎng)分別為2、、;
(3)如圖3,點(diǎn)A、B、C是小正方形的頂點(diǎn),求∠ABC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為了解本校學(xué)生對(duì)球類運(yùn)動(dòng)的愛(ài)好情況,采用抽樣的方法,從乒乓球、羽毛球、籃球和排球四個(gè)方面調(diào)查了若干名學(xué)生,在還沒(méi)有繪制成功的“折線統(tǒng)計(jì)圖”與“扇形統(tǒng)計(jì)圖”中,請(qǐng)你根據(jù)已提供的部分信息解答下列問(wèn)題.
(1)在這次調(diào)查活動(dòng)中,一共調(diào)查了 名學(xué)生,并請(qǐng)補(bǔ)全統(tǒng)計(jì)圖.
(2)“羽毛球”所在的扇形的圓心角是 度.
(3)若該校有學(xué)生1200名,估計(jì)愛(ài)好乒乓球運(yùn)動(dòng)的約有多少名學(xué)生?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com