【題目】如圖,是一輛小汽車與墻平行停放的平面示意圖,汽車靠墻一側(cè)OB與墻MN平行且距離為0.8米,一輛小汽車車門寬AO1.2米,當(dāng)車門打開角度∠AOB40°時,車門是否會碰到墻?______;(填“是”或“否”)請簡述你的理由_______(參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)

【答案】否, 點A到OB的距離小于OB與墻MN平行且距離

【解析】

過點AACOB,垂足為點C,解三角形求出AC的長度,進而作出比較即可.

過點AACOB,垂足為點C,

RtACO中,

∵∠AOC=40°,AO=1.2米,

AC=sinAOCAO0.64×1.2=0.768,

∵汽車靠墻一側(cè)OB與墻MN平行且距離為0.8米,

∴車門不會碰到墻(點AOB的距離小于OB與墻MN平行且距離),

故答案為:否,點AOB的距離小于OB與墻MN平行且距離.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,Rt△ABC中,若AC=4,BC=3,DE⊥AC,且DE=DB,求AD的長;

(2)如圖2,已知△ABC,若AB邊上存在一點M,若AC邊上存在一點N,使MB=MN,且△AMN∽△ABC,請利用沒有刻度的直尺和圓規(guī),作出符合條件的線段MN(注:不寫作法,保留作圖痕跡,對圖中涉及到的點用字母進行標(biāo)注).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點的坐標(biāo)為.

1)如圖1,若點的坐標(biāo)為,是等腰直角三角形,,,求點坐標(biāo);

2)如圖2,若點的中點,求證:;

3)如圖3是等腰直角三角形,,,是等邊三角形,連接,若,求點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠B=C=90°,ABCDAD=AB+CD

1)利用尺規(guī)作∠ADC的平分線DE,交BC于點E,在AD上截取AF=AB,連接AEEF(保留作圖痕跡,不寫作法);
2)在(l)的條件下,求證:EC=EF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是小明利用等腰直角三角板測量旗桿高度的示意圖.等腰直角三角板的斜邊BD與地面AF平行,當(dāng)小明的視線恰好沿BC經(jīng)過旗桿頂部點E時,測量出此時他所在的位置點A與旗桿底部點F的距離為10米.如果小明的眼睛距離地面1.7米,那么旗桿EF的高度為( 。

A. 10米 B. 11.7米 C. 10 D. (5+1.7)米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)在圖中作出△ABC關(guān)于直線m對稱的△ABC′,并寫出A′、B′、C′三點的坐標(biāo)(2)猜想:坐標(biāo)平面內(nèi)任意點Px,y)關(guān)于直線m對稱點P′的坐標(biāo)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtACB,ACB=90°AC=BC,E點為射線CB上一動點,連接AE,作AFAEAF=AE.

(1)如圖1,過F點作FDACACD點,求證:EC+CD=DF

(2)如圖2,連接BFACG, =3,求證:E點為BC中點;

(3)當(dāng)E點在射線CB,連接BF與直線AC交于G,,=_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:已知在△ABC中,AB=AC,DBC邊的中點,過點DDEAB,DFAC,垂足分別為E,F(xiàn).

(1)求證:DE=DF;

(2)若∠A=60°,BE=1,求△ABC的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=6,BC=8,點M,N同時從點B出發(fā),分別在BC,BA上運動,若點M的運動速度是每秒2個單位長度,且是點N運動速度的2倍,當(dāng)其中一個點到達終點時,停止一切運動.以MN為對稱軸作△MNB的對稱圖形△MNB1.點B1恰好在AD上的時間為______秒.在整個運動過程中,△MNB1與矩形ABCD重疊部分面積的最大值為______

查看答案和解析>>

同步練習(xí)冊答案