【題目】如圖,是一輛小汽車與墻平行停放的平面示意圖,汽車靠墻一側(cè)OB與墻MN平行且距離為0.8米,一輛小汽車車門寬AO為1.2米,當(dāng)車門打開角度∠AOB為40°時,車門是否會碰到墻?______;(填“是”或“否”)請簡述你的理由_______.(參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,Rt△ABC中,若AC=4,BC=3,DE⊥AC,且DE=DB,求AD的長;
(2)如圖2,已知△ABC,若AB邊上存在一點M,若AC邊上存在一點N,使MB=MN,且△AMN∽△ABC,請利用沒有刻度的直尺和圓規(guī),作出符合條件的線段MN(注:不寫作法,保留作圖痕跡,對圖中涉及到的點用字母進行標(biāo)注).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點的坐標(biāo)為.
(1)如圖1,若點的坐標(biāo)為,是等腰直角三角形,,,求點坐標(biāo);
(2)如圖2,若點是的中點,求證:;
(3)如圖3,是等腰直角三角形,,,是等邊三角形,連接,若,求點坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠B=∠C=90°,AB>CD,AD=AB+CD.
(1)利用尺規(guī)作∠ADC的平分線DE,交BC于點E,在AD上截取AF=AB,連接AE.EF(保留作圖痕跡,不寫作法);
(2)在(l)的條件下,求證:EC=EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是小明利用等腰直角三角板測量旗桿高度的示意圖.等腰直角三角板的斜邊BD與地面AF平行,當(dāng)小明的視線恰好沿BC經(jīng)過旗桿頂部點E時,測量出此時他所在的位置點A與旗桿底部點F的距離為10米.如果小明的眼睛距離地面1.7米,那么旗桿EF的高度為( 。
A. 10米 B. 11.7米 C. 10米 D. (5+1.7)米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)在圖中作出△ABC關(guān)于直線m對稱的△A′B′C′,并寫出A′、B′、C′三點的坐標(biāo)(2)猜想:坐標(biāo)平面內(nèi)任意點P(x,y)關(guān)于直線m對稱點P′的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ACB中,∠ACB=90°,AC=BC,E點為射線CB上一動點,連接AE,作AF⊥AE且AF=AE.
(1)如圖1,過F點作FD⊥AC交AC于D點,求證:EC+CD=DF;
(2)如圖2,連接BF交AC于G點,若 =3,求證:E點為BC中點;
(3)當(dāng)E點在射線CB上,連接BF與直線AC交于G點,若,則=_______
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:已知在△ABC中,AB=AC,D為BC邊的中點,過點D作DE⊥AB,DF⊥AC,垂足分別為E,F(xiàn).
(1)求證:DE=DF;
(2)若∠A=60°,BE=1,求△ABC的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6,BC=8,點M,N同時從點B出發(fā),分別在BC,BA上運動,若點M的運動速度是每秒2個單位長度,且是點N運動速度的2倍,當(dāng)其中一個點到達終點時,停止一切運動.以MN為對稱軸作△MNB的對稱圖形△MNB1.點B1恰好在AD上的時間為______秒.在整個運動過程中,△MNB1與矩形ABCD重疊部分面積的最大值為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com