【題目】如圖,在一條筆直的東西向海岸線l上有一長為1.5km的碼頭MN和燈塔C,燈塔C距碼頭的東端N有20km.一輪船以36km/h的速度航行,上午10:00在A處測得燈塔C位于輪船的北偏西30°方向,上午10:40在B處測得燈塔C位于輪船的北偏東60°方向,且與燈塔C相距12km.
(1)若輪船照此速度與航向航向,何時到達海岸線?
(2)若輪船不改變航向,該輪船能否?吭诖a頭?請說明理由(參考數(shù)據(jù): ≈1.4, ≈1.7).
【答案】(1)11:00;(2)能,理由見解析.
【解析】試題分析:(1)延長AB交海岸線l于點D,過點B作BE⊥海岸線l于點E,過點A作AF⊥l于F,易證△ABC是直角三角形,再證明∠BAC=30°,再求出BD的長即可解決問題.(2)在RT△BEC中,求出CD的長度,和CN、CM比較即可解決問題.
試題解析:(1)延長AB交海岸線l于點D,過點B作BE⊥海岸線l于點E,過點A作AF⊥l于F,如圖所示.
∵∠BEC=∠AFC=90°,∠EBC=60°,∠CAF=30°,
∴∠ECB=30°,∠ACF=60°,
∴∠BCA=90°,
∵BC=12,AB=36×=24,
∴AB=2BC,
∴∠BAC=30°,∠ABC=60°,
∵∠ABC=∠BDC+∠BCD=60°,
∴∠BDC=∠BCD=30°,
∴BD=BC=12,
∴時間t==小時=20分鐘,
∴輪船照此速度與航向航向,上午11::00到達海岸線.
(2)∵BD=BC,BE⊥CD,
∴DE=EC,
在RT△BEC中,∵BC=12,∠BCE=30°,
∴BE=6,EC=6≈10.2,
∴CD=20.4,
∵20<20.4<21.5,
∴輪船不改變航向,輪船可以停靠在碼頭.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將△ABC繞點B順時針旋轉(zhuǎn)60°得△DBE,點C的對應點E恰好落在AB延長線上,連接AD.下列結(jié)論一定正確的是()
A. AD∥BC B. ∠CBE=∠C C. ∠ABD=∠E D. AD=BC
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,已知在△ABC中,∠B=90°,AB=5 cm,BC=7 cm,點Q從點A開始沿AB邊以1 cm/s的速度向點B移動,點P從點B開始沿BC邊以2 cm/s的速度向點C移動,如果點Q,P分別從A,B兩點同時出發(fā),當一動點運動到終點,另一動點也隨之停止運動.
(1)幾秒后,△PBQ的面積等于4 cm2?
(2)幾秒后,PQ的長度等于2 cm?
(3)在(1)中,△PBQ的面積能否等于7 cm2?試說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學課外興趣小組的同學們要測量被池塘隔開的兩棵樹A,B之間的距離,他們設計了如圖所示的測量方案:從樹A沿著垂直于AB的方向走到點E處,再從點E沿著垂直于AE的方向走到點F處,C為AE上一點,其中三位同學分別測得三組數(shù)據(jù):①AC,∠ACB;②EF,DE,AD;③CD,∠ACB,∠ADB.其中能根據(jù)所測數(shù)據(jù)求得A,B兩樹之間的距離的有________組.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,為測量一座山峰CF的高度,將此山的某側(cè)山坡劃分為AB和BC兩段,每一段山坡近似是“直”的,測得坡長AB=800米,BC=200米,坡角∠BAF=30°,∠CBE=45°.
(1)求AB段山坡的高度EF;
(2)求山峰的高度CF.(1.414,CF結(jié)果精確到米)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB∥CD,點E、M分別為直線AB、CD上的點,點N為兩平行線間的點,連接NE、NM,過點N作NG平分∠ENM,交直線CD于點G,過點N作NF⊥NG,交直線CD于點F,若∠BEN=160°,則∠NGD﹣∠MNF=__度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖△ABC中,AB=5,AC=3,則中線AD的取值范圍是( )
A. 2<AD<8B. 2<AD<4C. 1<AD<4D. 1<AD<8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E為AB的中點,
(1)求證:AC2=ABAD;
(2)求證:CE∥AD;
(3)若AD=4,AB=6,求 的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲乙兩人玩“石頭、剪子、布”游戲,他們在不透明的袋子中放人形狀、大小均相同的18張卡片,其中寫有“石頭”、“剪子”、“布”的卡片張數(shù)分別為5、6、7.兩人先后各隨機摸出一張卡片(先摸者不放回)來比勝負,并約定:“石頭”勝“剪子”,“剪子”勝“布”,“布”勝“石頭”,同種卡片不分勝負.
(1)若甲先摸,則他摸出“剪子”的概率是多少?
(2)若甲先摸出了“剪子”,則乙獲勝的概率是多少?
(3)若甲先摸出了“布”,則甲獲勝的概率是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com