【題目】如圖,點O是等邊三角形ABC內(nèi)的一點,∠BOC=150°,將△BOC繞點C按順時針旋轉得到△ADC,連接OD,OA

1)求∠ODC的度數(shù);

2)若OB=4,OC=5,求AO的長.

【答案】160°;(2

【解析】

1)根據(jù)旋轉的性質(zhì)得到三角形ODC為等邊三角形即可求解;
2)由旋轉的性質(zhì)得:AD=OB=4,結合題意得到∠ADO=90°.則在RtAOD中,由勾股定理即可求得AO的長.

1)由旋轉的性質(zhì)得:CD=CO,∠ACD=BCO

∵∠ACB=ACO+OCB=60°,

∴∠DCO=ACO+ACD=ACO+OCB=60°,

∴△OCD為等邊三角形,

∴∠ODC=60°

2)由旋轉的性質(zhì)得:AD=OB=4

∵△OCD為等邊三角形,∴OD=OC=5

∵∠BOC=150°,∠ODC=60°,∴∠ADO=90°

RtAOD中,由勾股定理得:AO=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O的半徑為2,O到定點A的距離為5,點B在⊙O上,點P是線段AB的中點.若B在⊙O上運動一周:

1)證明點P運動的路徑是一個圓.

(思路引導:要證點P運動的路徑是一個圓,只要證點P到定點M的距離等于定長r,由圖中的定點、定長可以發(fā)現(xiàn)M、r.)

2)△ABC始終是一個等邊三角形,直接寫出PC長的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將含有 30°角的直角三角板 OAB 如圖放置在平面直角坐標系中,OB x軸上, OA=2,將三角板繞原點 O 順時針旋轉 75°,則點 A 的對應點 A′ 的坐標為___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是拋物線型拱橋,當拱頂離水面8m時,水面寬AB12m.當水面上升6m時達到警戒水位,此時拱橋內(nèi)的水面寬度是多少m?

下面給出了解決這個問題的兩種方法,請補充完整:

方法一:如圖1,以點A為原點,AB所在直線為x軸,建立平面直角坐標系xOy,

此時點B的坐標為(   ,   ),拋物線的頂點坐標為(      ),

可求這條拋物線所表示的二次函數(shù)的解析式為   

y6時,求出此時自變量x的取值,即可解決這個問題.

方法二:如圖2,以拋物線頂點為原點,對稱軸為y軸,建立平面直角坐標系xOy,

這時這條拋物線所表示的二次函數(shù)的解析式為   

y   時,求出此時自變量x的取值為   ,即可解決這個問題.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于拋物線.

1)它與x軸交點的坐標為 ,與y軸交點的坐標為 ,頂點坐標為 ;

2)在坐標系中利用描點法畫出此拋物線;

x








y








3)利用以上信息解答下列問題:若關于x的一元二次方程t為實數(shù))在x的范圍內(nèi)有解,則t的取值范圍是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知⊙O的直徑CD=10cm,AB是⊙O的弦,ABCD,垂足為M,且AB=8cm,則AC的長為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:關于x的二次函數(shù)的圖象與x軸交于點A(1,0)和點B,與y軸交于點C(0,3),拋物線的對稱軸與x軸交于點D.

(1)求二次函數(shù)的表達式;

(2)y軸上是否存在一點P,使PBC為等腰三角形.若存在,請求出點P的坐標;

(3)有一個點M從點A出發(fā),以每秒1個單位的速度在AB上向點B運動,另一個點N從點D與點M同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運動,當點M 達點B時,點M、N同時停止運動,問點M、N運動到何處時,MNB面積最大,試求出最大面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是二次函數(shù)yax2+bx+ca≠0)的圖象的一部分,給出下列命題:①a+b+c=0;②b>2a;③ax2+bx+c=0的兩根分別為﹣3和1;④a﹣2b+c>0,其中正確的命題是( )

A. ①②③B. ①③C. ①④D. ①③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,直線y=x經(jīng)過點A,作ABx軸于點B,將ABO繞點B逆時針旋轉60°得到CBD,若點B的坐標為(2,0),則點C的坐標為

查看答案和解析>>

同步練習冊答案