【題目】已知拋物線y=(x﹣m)2﹣(x﹣m),其中m是常數(shù).
(1)求證:不論m為何值,該拋物線與x軸一定有兩個公共點;
(2)若該拋物線的對稱軸為直線x=
①求該拋物線的函數(shù)解析式;
②把該拋物線沿y軸向上平移多少個單位長度后,得到的拋物線與x軸只有一個公共點.

【答案】
(1)

證明:y=(x﹣m)2﹣(x﹣m)=x2﹣(2m+1)x+m2+m,

∵△=(2m+1)2﹣4(m2+m)=1>0,

∴不論m為何值,該拋物線與x軸一定有兩個公共點


(2)

解:①∵x=﹣ = ,

∴m=2,

∴拋物線解析式為y=x2﹣5x+6;

②設(shè)拋物線沿y軸向上平移k個單位長度后,得到的拋物線與x軸只有一個公共點,則平移后拋物線解析式為y=x2﹣5x+6+k,

∵拋物線y=x2﹣5x+6+k與x軸只有一個公共點,

∴△=52﹣4(6+k)=0,

∴k=

即把該拋物線沿y軸向上平移 個單位長度后,得到的拋物線與x軸只有一個公共點


【解析】(1)先把拋物線解析式化為一般式,再計算△的值,得到△=1>0,于是根據(jù)△=b2﹣4ac決定拋物線與x軸的交點個數(shù)即可判斷不論m為何值,該拋物線與x軸一定有兩個公共點;(2)①根據(jù)對稱軸方程得到=﹣ = ,然后解出m的值即可得到拋物線解析式;②根據(jù)拋物線的平移規(guī)律,設(shè)拋物線沿y軸向上平移k個單位長度后,得到的拋物線與x軸只有一個公共點,則平移后拋物線解析式為y=x2﹣5x+6+k,再利用拋物線與x軸的只有一個交點得到△=52﹣4(6+k)=0,然后解關(guān)于k的方程即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從甲學(xué)校到乙學(xué)校有A1、A2、A3三條線路,從乙學(xué)校到丙學(xué)校有B1、B2二條線路.
(1)利用樹狀圖或列表的方法表示從甲學(xué)校到丙學(xué)校的線路中所有可能出現(xiàn)的結(jié)果;
(2)小張任意走了一條從甲學(xué)校到丙學(xué)校的線路,求小張恰好經(jīng)過了B1線路的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,點E在邊BC上移動(點E不與點B,C重合),滿足∠DEF=∠B,且點D、F分別在邊AB、AC上.
(1)求證:△BDE∽△CEF;
(2)當(dāng)點E移動到BC的中點時,求證:FE平分∠DFC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:| ﹣1|+(2017﹣π)0﹣( 1﹣3tan30°+

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將△ABC沿著過AB中點D的直線折疊,使點A落在BC邊上的A1處,稱為第1次操作,折痕DE到BC的距離記為h1;還原紙片后,再將△ADE沿著過AD中點D1的直線折疊,使點A落在DE邊上的A2處,稱為第2次操作,折痕D1E1到BC的距離記為h2;按上述方法不斷操作下去…,經(jīng)過第2015次操作后得到的折痕D2014E2014到BC的距離記為h2015 . 若h1=1,則h2015的值為(
A.
B.
C.1﹣
D.2﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在方格紙中,線段a,b,c,d的端點在格點上,通過平移其中兩條線段,使得和第三條線段首尾相接組成三角形,則能組成三角形的不同平移方法有(
A.3種
B.6種
C.8種
D.12種

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某乒乓球館使用發(fā)球機進(jìn)行輔助訓(xùn)練,出球口在桌面中線端點A處的正上方,假設(shè)每次發(fā)出的乒乓球的運動路線固定不變,且落在中線上.在乒乓球運行時,設(shè)乒乓球與端點A的水平距離為x(米),與桌面的高度為y(米),運行時間為t(秒),經(jīng)多次測試后,得到如下部分?jǐn)?shù)據(jù):

t(秒)

0

0.16

0.2

0.4

0.6

0.64

0.8

6

X(米)

0

0.4

0.5

1

1.5

1.6

2

y(米)

0.25

0.378

0.4

0.45

0.4

0.378

0.25


(1)當(dāng)t為何值時,乒乓球達(dá)到最大高度?
(2)乒乓球落在桌面時,與端點A的水平距離是多少?
(3)乒乓球落在桌面上彈起后,y與x滿足y=a(x﹣3)2+k.
①用含a的代數(shù)式表示k;
②球網(wǎng)高度為0.14米,球桌長(1.4×2)米.若球彈起后,恰好有唯一的擊球點,可以將球沿直線扣殺到點A,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了深化課程改革,某校積極開展校本課程建設(shè),計劃成立“文學(xué)鑒賞”、“科學(xué)實驗”、“音樂舞蹈”和“手工編織”等多個社團(tuán),要求每位學(xué)生都自主選擇其中一個社團(tuán).為此,隨機調(diào)查了本校各年級部分學(xué)生選擇社團(tuán)的意向,并將調(diào)查結(jié)果繪制成如下統(tǒng)計圖表(不完整):

選擇意向

所占百分比

文學(xué)鑒賞

a

科學(xué)實驗

35%

音樂舞蹈

b

手工編織

10%

其他

c

根據(jù)統(tǒng)計圖表中的信息,解答下列問題:

(1)求本次調(diào)查的學(xué)生總?cè)藬?shù)及a,b,c的值;
(2)將條形統(tǒng)計圖補充完整;
(3)若該校共有1200名學(xué)生,試估計全校選擇“科學(xué)實驗”社團(tuán)的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果二次函數(shù)的二次項系數(shù)為l,則此二次函數(shù)可表示為y=x2+px+q,我們稱[p,q]為此函數(shù)的特征數(shù),如函數(shù)y=x2+2x+3的特征數(shù)是[2,3].
(1)若一個函數(shù)的特征數(shù)為[﹣2,1],求此函數(shù)圖象的頂點坐標(biāo).
(2)探究下列問題: ①若一個函數(shù)的特征數(shù)為[4,﹣1],將此函數(shù)的圖象先向右平移1個單位,再向上平移1個單位,求得到的圖象對應(yīng)的函數(shù)的特征數(shù).
②若一個函數(shù)的特征數(shù)為[2,3],問此函數(shù)的圖象經(jīng)過怎樣的平移,才能使得到的圖象對應(yīng)的函數(shù)的特征數(shù)為[3,4]?

查看答案和解析>>

同步練習(xí)冊答案