19、已知:如圖所示,直線MA∥NB,∠MAB與∠NBA的平分線交于點(diǎn)C,過(guò)點(diǎn)C作一條直線l與兩條直線MA、NB分別相交于點(diǎn)D、E.

(1)如圖1所示,當(dāng)直線l與直線MA垂直時(shí),猜想線段AD、BE、AB之間的數(shù)量關(guān)系,請(qǐng)直接寫(xiě)出結(jié)論,不用證明;
(2)如圖2所示,當(dāng)直線l與直線MA不垂直且交點(diǎn)D、E都在AB的同側(cè)時(shí),(1)中的結(jié)論是否成立?如果成立,請(qǐng)證明:如果不成立,請(qǐng)說(shuō)明理由;
(3)當(dāng)直線l與直線MA不垂直且交點(diǎn)D、E在AB的異側(cè)時(shí),(1)中的結(jié)論是否仍然成立?如果成立,請(qǐng)說(shuō)明理由;如果不成立,那么線段AD、BE、AB之間還存在某種數(shù)量關(guān)系嗎?如果存在,請(qǐng)直接寫(xiě)出它們之間的數(shù)量關(guān)系.
分析:(1)根據(jù)各線段之間的長(zhǎng)度,先猜想AD+BE=AB.
(2)在AB上截取AG=AD,連接CG,利用三角形全等的判定定理可判斷出AD=AG.同理可證,BG=BE,即AD+BE=AB.
(3)畫(huà)出直線l與直線MA不垂直且交點(diǎn)D、E在AB的異側(cè)時(shí)的圖形,分兩種情況討論:
①當(dāng)點(diǎn)D在射線AM上、點(diǎn)E在射線BN的反向延長(zhǎng)線上時(shí);
②點(diǎn)D在射線AM的反向延長(zhǎng)線上,點(diǎn)E在射線BN上時(shí);
AD,BE,AB之間的關(guān)系.
解答:解:(1)AD+BE=AB.

(2)成立.
(方法一):在AB上截取AG=AD,連接CG.
∵AC平分∠MAB,
∴∠DAC=∠CAB,
又∵AC=AC,AD=AG,
∴△ADC≌△AGC(SAS),
∴∠DCA=∠ACG,
∵AM∥BN,
∴∠DAC+∠CAB+∠GBC+∠CBE=180°,
∵∠DAC=∠CAB,∠GBC=∠CBE,
∴∠CAB+∠GBC=90°,
∴∠ACB=90°即∠ACG+∠GCB=90°,
∵∠DCA+∠ACG+∠GCB+∠BCE=180°,
∴∠DCA+∠BCE=90°,
∴∠GCB=∠ECB,
∵∠ABC=∠CBE,BC=BC,
∴△BGC≌△BEC.
∴BG=BE,
∴AD+BE=AG+BG,AD+BE=AB.

(方法二):過(guò)點(diǎn)C作直線FG⊥AM,垂足為點(diǎn)F,交BN于點(diǎn)G.作CH⊥AB,垂足為點(diǎn)H.
由(1)得AF+BG=AB,
∵AM∥BN,∠AFG=90°,
∴∠BGF=∠FGE=90°,
∵∠DAC=∠CAB,∠ABC=∠CBE,
∴CF=CH,CH=CG,
∴CF=CG,
∵∠FCD=∠ECG,
∴△CFD≌△CGE.
∴DF=EG,
∴AD+BE=AF+BG=AB.
(方法三):延長(zhǎng)GC,交AM于點(diǎn)F.
∵AM∥BN,
∴∠FCD=∠CBG,
∵∠CBH=∠CBG,
∴∠FCD=∠CBH,
∴AF=AB,
∵∠DAC=∠CAB,AC=AC,
∴△AFC≌△ABC,CF=CB,
∵∠ECG=∠BCG,
∴△FCD≌△BCE,
∴DF=BE,
∴AD+BE=AD+DF=AF=AB.

(3)不成立.
存在.當(dāng)點(diǎn)D在射線AM上、點(diǎn)E在射線BN的反向延長(zhǎng)線上時(shí)(如圖①),AD-BE=AB.
當(dāng)點(diǎn)D在射線AM的反向延長(zhǎng)線上,點(diǎn)E在射線BN上時(shí)(如圖②),BE-AD=AB.
點(diǎn)評(píng):此題很復(fù)雜,解答此題的關(guān)鍵是作出輔助線,利用全等三角形的判定定理及性質(zhì)解答,解答(3)時(shí)注意分兩種情況討論,不要漏解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

7、已知:如圖所示,直線a,b都與直線c相交,給出下列條件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°.其中能判定a∥b的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、已知:如圖所示,直線AD∥BC,AD平分∠CAE,求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

4、已知:如圖所示,直線AB、CD相交于O,OD平分∠BOE,∠AOC=42°,則∠AOE的度數(shù)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖所示,直線l的解析式為y=
34
x-3
,并且與x軸、y軸分別交于點(diǎn)A、B.
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)半徑為0.75的⊙O1,以0.4個(gè)單位/秒的速度從原點(diǎn)向x軸正方向運(yùn)動(dòng),問(wèn)在什么時(shí)刻與直線l相切;
(3)在第(2)題的條件下,在⊙O1運(yùn)動(dòng)的同時(shí),與之大小相同的⊙O2從點(diǎn)B出發(fā),沿BA方向運(yùn)動(dòng),兩圓經(jīng)過(guò)的區(qū)域重疊部分是什么形狀的圖形?并求出其面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖所示,直線AB∥CD,CO⊥OD于O點(diǎn),并且∠1=40度.則∠D的度數(shù)是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案