精英家教網(wǎng)如圖,平行四邊形ABCD是由4個全等的等腰梯形拼接而成的.
(1)圖中的等腰梯形的內(nèi)角有什么特征?
(2)圖中的等腰梯形的邊長有什么特征?
(3)請分別用3個這種等腰梯形拼接成一個正三角形,用4個拼接成一個較大的等腰梯形,用6個拼接成一個菱形.(只畫出拼圖)
分析:(1)根據(jù)圓周角為360°結合圖形可得出等腰梯形內(nèi)角的特征.
(2)根據(jù)(1)所確定的度數(shù)即可確定邊長的特征.
(3)根據(jù)題意要求,結合等腰梯形的性質及菱形的性質進行作圖即可.
解答:精英家教網(wǎng)解:(1)從圖中發(fā)現(xiàn):∠DFE+∠EFG+∠DFG=360°,∠DFE=∠EFG=∠DFG
∴∠DFE=120°.
∵AD∥EF,
∴∠ADF=60°.
即梯形的上底角為120°,下底角為60°;

(2)∵EF既是梯形的腰,又是梯形的上底,
∴梯形的腰等于上底.(3分)
連接DG.因為FD=FG,
所以∠FDG=∠FGD=
1
2
(180°-120°)=30°,
則∠HDG=30°,從而∠HGD=90°.
所以HG=
1
2
HD.即梯形的腰等于上底且等于下底的一半;(5分)
(3)方法不唯一,如圖.(每圖2分)
精英家教網(wǎng)
點評:本題考查等腰梯形的知識,難度一般,有一定的開放性,解答本題的關鍵是得出等腰梯形的內(nèi)角的度數(shù),它是本題的突破口.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,平行四邊形ABCD在平面直角坐標系中,AD=6,若OA、OB的長是關于x的一元二精英家教網(wǎng)次方程x2-7x+12=0的兩個根,且OA>OB.
(1)求
OA
AB
的值.
(2)若E為x軸上的點,且S△AOE=
16
3
,求經(jīng)過D、E兩點的直線的解析式,并判斷△AOE與△DAO是否相似?
(3)若點M在平面直角坐標系內(nèi),則在直線AB上是否存在點F,使以A、C、F、M為頂點的四邊形為菱形?若存在,請直接寫出F點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

10、如圖,平行四邊形ABCD中,∠ABC的角平分線BE交AD于E點,AB=3,ED=1,則平行四邊形ABCD的周長是
14

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,平行四邊形ABCD中,AB⊥AC,AB=1,BC=
5
,對角線AC、BD相交于點O,將直線AC繞點O順時針旋轉一定角度后,分別交BC、AD于點E、F.
精英家教網(wǎng)
(1)試說明在旋轉過程中,線段AF與EC總保持相等;
(2)當旋轉角為90°時,在圖2中畫出直線AC旋轉后的位置并證明此時四邊形ABEF是平行四邊形;
(3)在直線AC旋轉過程中,四邊形BEDF可能是菱形嗎?如果不能,請說明理由;如果能,說明理由并求出此時AC繞點O順時針旋轉的度數(shù).(圖供畫圖或解釋時使用)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,平行四邊形ABCD中,對角線AC和BD相交于點O,如果AC=12,BD=10,AB=m,那么m的取值范圍是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,平行四邊形ABCD的兩條對角線AC、BD相交于點O,AB=5,AC=6,DB=8,則四邊形ABCD是的周長為
20
20

查看答案和解析>>

同步練習冊答案