【題目】運城市對市民開展了有關霧霾的調(diào)查問卷,調(diào)查內(nèi)容是“你認為哪種措施治理霧霾最有效”,有以下四個選項:
A.綠化造林 B.汽車限行 C.拆除燃煤小鍋爐 D.使用清潔能源.
調(diào)查過程隨機抽取了部分市民進行調(diào)查,并將調(diào)查結果繪制了兩幅不完整的統(tǒng)計圖,請回答下列問題:
(1)這次被調(diào)查的市民共有多少人?
(2)請你將統(tǒng)計圖1補充完整.
(3)求圖2中項目對應的扇形的圓心角的度數(shù).
(4)請你結合自己的實際情況對有效治理霧霾提幾點建議.(至少寫一條)
【答案】(1)200;(2)見詳解;(3);(4)禁止燃放鞭炮煙花(答案不唯一)
【解析】
(1)根據(jù)A組有20人,所占的百分比是10%,據(jù)此即可即可求得總人數(shù);
(2)利用總人數(shù)減去其他組的人數(shù)即可求得C組的人數(shù),即可補全直方圖;
(3)用D項目對應的人數(shù)除以總人數(shù),再乘以360度即可得出答案;
(4)結合實際自由發(fā)揮即可.
解:(1)20÷10%=200(人);
答:這次被調(diào)查的市民共有200人.
(2)200-20-80-40=60(人);
補全圖形如下:
(3)
答:項目對應的扇形的圓心角的度數(shù)為72度.
(4)治理大氣污染嚴重的企業(yè),節(jié)能減排;禁止燃放鞭炮煙花.
科目:初中數(shù)學 來源: 題型:
【題目】下面表格是某次籃球聯(lián)賽部分球隊不完整的積分表:
隊名 | 比賽場數(shù) | 勝場 | 負場 | 積分 |
前進 | 14 | 10 | 4 | 24 |
光明 | 14 | 9 | 5 | 23 |
遠大 | 14 | 22 | ||
衛(wèi)星 | 14 | 4 | 10 | |
鋼鐵 | 14 | 0 | 14 | 14 |
請根據(jù)表格提供的信息:
(1)求出的值;
(2)請直接寫出______,______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①是一張長為18,寬為12的長方形硬紙板,把它的四個角都剪去一個邊長為的小正方形,然后把它折成一個無蓋的長方體盒子(如圖②),請回答下列問題:
(1)折成的無蓋長方體盒子的容積 ;(用含的代數(shù)式表示即可,不需化簡)
(2)請完成下表,并根據(jù)表格回答,當取什么正整數(shù)時,長方體盒子的容積最大?
1 | 2 | 3 | 4 | 5 | |
160 | ________ | 216 | ________ | 80 |
(3)從正面看折成的長方體盒子,它的形狀可能是正方形嗎?如果是正方形,求出的值;如果不是正方形,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為改善生態(tài)環(huán)境,防止水土流失,某村計劃在堤坡種植白楊樹,現(xiàn)甲、乙兩家林場有相同的白楊樹苗可供選擇,其具體銷售方案如下:
設購買白楊樹苗x棵,到兩家林場購買所需費用分別為(元)、(元). 則:
(1)該村需要購買1500棵白楊樹苗,若都在甲林場購買所需費用為 元,若都在乙林場購買所需費用為 元;
(2)分別求出、與x之間的函數(shù)關系式;
(3)如果你是該村的負責人,應該選擇到哪家林場購買樹苗合算,為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,四邊形ABCD是菱形,點A的坐標為(0,),分別以A,B為圓心,大于AB的長為半徑作弧,兩弧交于點E,F,直線EF恰好經(jīng)過點D,則點D的坐標為( 。
A. (2,2)B. (2,)C. (,2)D. (+1,
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】云南魯?shù)?/span>6.5級地震后,空軍某部奉命赴災區(qū)空投救災物資,已知物資離開飛機在空中沿拋物線降落,拋物線的頂點在機艙艙口點A處(如圖所示).
(1)若物體離開A處后下落的豎直高度AB=160 m時,水平距離BC=200 m,那么要使飛機在豎直高度OA=1 km的空中空投的物資恰好落在居民點P處,求飛機到點P處的水平距離OP應為多少;
(2)根據(jù)當時的風力測算,空投物資離開A處的豎直距離為160 m時,它到A處的水平距離將增至400 m.要使飛機在(1)中的點O正上方空投物資到P處,飛機離地面的高度應為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸相交于A、B兩點,與y軸相交于點C,且點B與點C的坐標分別為B(3,0).C(0,3),點M是拋物線的頂點.
(1)求二次函數(shù)的關系式;
(2)點P為線段MB上一個動點,過點P作PD⊥x軸于點D.若OD=m,△PCD的面積為S,試判斷S有最大值或最小值?并說明理由;
(3)在MB上是否存在點P,使△PCD為直角三角形?如果存在,請求出點P的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點A的坐標為,以線段OA為邊作等邊三角形,使點B落在第四象限內(nèi),點C為x正半軸上一動點,連接BC,以線段BC為邊作等邊三角形,使點D落在第四象限內(nèi).
(1)如圖1,在點C運動的過程巾,連接AD.
①和全等嗎?請說明理由:
②延長DA交y軸于點E,若,求點C的坐標:
(2)如圖2,已知,當點C從點O運動到點M時,點D所走過的路徑的長度為_________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com