【題目】如圖,AB為半圓的直徑,C是半圓弧上一點(diǎn),正方形DEFG的一邊DG在直徑AB上,另一邊DE過△ABC的內(nèi)切圓圓心O,且點(diǎn)E在半圓弧上.若正方形DEFG的面積為100,且△ABC的內(nèi)切圓半徑r=4,則半圓的直徑AB=____.
【答案】21
【解析】
連接EB、AE,OJ、OI,可得OHCI是正方形,且邊長是4,可設(shè)BD=x,AD=y,則BD=BH=x,AD=AI=y,分別利用直角三角形ABC和直角三角形AEB中的勾股定理和相似比作為相等關(guān)系列方程組求解即可求得半圓的直徑AB=21.
∵正方形DEFG的面積為100,
∴正方形DEFG邊長為10.
連接EB、AE,OI、OJ,
∵AC、BC是⊙O的切線,
∴CJ=CI,∠OJC=∠OIC=90°,
∵∠ACB=90°,
∴四邊形OICJ是正方形,且邊長是4,
設(shè)BD=x,AD=y,則BD=BI=x,AD=AJ=y,
在Rt△ABC中,由勾股定理得(x+4)2+(y+4)2=(x+y)2①;
在Rt△AEB中,
∵∠AEB=90°,ED⊥AB,
∴△ADE∽△BDE∽△ABE,
∴ED2=ADBD,即102=xy②.
解①、②得x+y=21,即半圓的直徑AB=21.
故答案為:21.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】韋達(dá)定理:若一元二次方程ax2+bx+c=0(a≠0)的兩根分別為x1、x2 , 則x1+x2=﹣ , x1x2= , 閱讀下面應(yīng)用韋達(dá)定理的過程:
若一元二次方程﹣2x2+4x+1=0的兩根分別為x1、x2 , 求x12+x22的值.
解:該一元二次方程的△=b2﹣4ac=42﹣4×(﹣2)×1=24>0
由韋達(dá)定理可得,x1+x2=﹣=﹣=2,x1x2===﹣
x12+x22=(x1+x2)2﹣2x1x2
=22﹣2×(﹣)
=5
然后解答下列問題:
(1)設(shè)一元二次方程2x2+3x﹣1=0的兩根分別為x1,x2, 不解方程,求x12+x22的值;
(2)若關(guān)于x的一元二次方程(k﹣1)x2+(k2﹣1)x+(k﹣1)2=0的兩根分別為α,β,且α2+β2=4,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點(diǎn),BD是對(duì)角線,AG∥DB交CB的延長線于G.
(1)求證:△CDB≌△BAG.
(2)如果四邊形BFDE是菱形,那么四邊形AGBD是什么特殊四邊形?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b(k≠0)與反比例函數(shù)y=(m≠0)的圖象交于點(diǎn)A(3,1),且過點(diǎn)B(0,﹣2).
(1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;
(2)如果點(diǎn)P是x軸上的一點(diǎn),且△ABP的面積是3,求點(diǎn)P的坐標(biāo);
(3)若P是坐標(biāo)軸上一點(diǎn),且滿足PA=OA,直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲班56人,其中身高在160厘米以上的男同學(xué)10人,身高在160厘米以上的女同學(xué)3人,乙班80人,其中身高在160厘米以上的男同學(xué)20人,身高在160厘米以上的女同學(xué)8人.如果想在兩個(gè)班的160厘米以上的女生中抽出一個(gè)作為旗手,在哪個(gè)班成功的機(jī)會(huì)大?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分10分)如圖,一次函數(shù)的圖象與反比例函數(shù)(為常數(shù),且)的圖象交于A(1,a)、B兩點(diǎn).
(1)求反比例函數(shù)的表達(dá)式及點(diǎn)B的坐標(biāo);
(2)在x軸上找一點(diǎn)P,使PA+PB的值最小,求滿足條件的點(diǎn)P的坐標(biāo)及△PAB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題10分)如圖,在△ABC中,AB=AC,以AC為直徑作⊙O交BC于點(diǎn)D,過點(diǎn)D作⊙O的切線,交AB于點(diǎn)E,交CA的延長線于點(diǎn)F.
(1)求證:FE⊥AB;
(2)當(dāng)EF=6,=時(shí),求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國家推行“節(jié)能減排,低碳經(jīng)濟(jì)”政策后,某環(huán)保節(jié)能設(shè)備生產(chǎn)企業(yè)的產(chǎn)品供不應(yīng)求,若該企業(yè)的某種環(huán)保設(shè)備每月的產(chǎn)量保持在一定的范國,每套產(chǎn)品的售價(jià)不低于90萬元,生產(chǎn)總成本不高于1250萬元,已知這種設(shè)備的月產(chǎn)量x(套)與每套產(chǎn)品的售價(jià)y1(萬元)之間滿足關(guān)系式y1=130﹣x,月產(chǎn)量x(套)與生產(chǎn)總成本y2(萬元)存在如圖所示的函數(shù)關(guān)系.
(1)求出y2與x之間的函數(shù)關(guān)系式,并求月產(chǎn)量x的范圍;
(2)當(dāng)月產(chǎn)量x(套)為多少時(shí),這種設(shè)備的利潤W(萬元)最大?最大利潤是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com