已知關于x的方程x2-(k+2)x+2k=0.
①小明同學說:無論k取何實數(shù),方程總有實數(shù)根,你認為他說的有道理嗎?
②若等腰三角形的一邊a=1,另兩邊b、c恰好是這個方程的兩個根,求△ABC的周長和面積.
分析:(1)計算方程的根的判別式即可說明其根的情況;
(2)已知a=1,則a可能是底,也可能是腰,分兩種情況求得b,c的值后,再求出△ABC的周長.注意兩種情況都要用三角形三邊關系定理進行檢驗.
解答:解:(1)∵△=(k+2)2-4×1×2k=k2+4k+4-8k=k2-4k+4=(k-2)2≥0,
∴方程無論k取何值,總有實數(shù)根,
∴小明同學的說法合理;
(2)①當b=c時,則△=0,
即(k-2)2=0,
∴k=2,
方程可化為x2-4x+4=0,
∴x1=x2=2,
而b=c=2,
∴C△ABC=5,S△ABC=
15
4
;

②當b=a=1,
∵x2-(k+2)x+2k=0.
∴(x-2)(x-k)=0,
∴x=2或x=k,
∵另兩邊b、c恰好是這個方程的兩個根,
∴k=1,
∴c=2,
∵a+b=c,
∴不滿足三角形三邊的關系,舍去;
綜上所述,△ABC的周長為5.
點評:本題考查了根與系數(shù)的關系,一元二次方程總有實數(shù)根應根據(jù)判別式來做,兩根互為相反數(shù)應根據(jù)根與系數(shù)的關系做,等腰三角形的周長應注意兩種情況,以及兩種情況的取舍.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

8、已知關于x的方程x2+kx+1=0和x2-x-k=0有一個根相同,則k的值為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•綿陽)已知關于x的方程x2-(m+2)x+(2m-1)=0.
(1)求證:方程恒有兩個不相等的實數(shù)根;
(2)若此方程的一個根是1,請求出方程的另一個根,并求以此兩根為邊長的直角三角形的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2007•西城區(qū)二模)已知關于x的方程x2+3x=8-m有兩個不相等的實數(shù)根.
(1)求m的最大整數(shù)是多少?
(2)將(1)中求出的m值,代入方程x2+3x=8-m中解出x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知關于x的方程x2-2(k+1)x+k2=0有兩個實數(shù)根,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知關于x的方程x2-(3k+1)x+2k2+2k=0
(1)求證:無論k取何實數(shù)值,方程總有實數(shù)根.
(2)若等腰△ABC的一邊長為a=6,另兩邊長b,c恰好是這個方程的兩個根,求此三角形的周長.

查看答案和解析>>

同步練習冊答案