【題目】如圖,在一面與地面垂直的圍墻的同側有一根高10米的旗桿AB和一根高度未知的電線桿CD,它們都與地面垂直,為了測得電線桿的高度,一個小組的同學進行了如下測量:某一時刻,在太陽光照射下,旗桿落在圍墻上的影子EF的長度為2米,落在地面上的影子BF的長為10米,而電線桿落在圍墻上的影子GH的長度為3米,落在地面上的影子DH的長為5米,依據這些數(shù)據,該小組的同學計算出了電線桿的高度.

(1)該小組的同學在這里利用的是   投影的有關知識進行計算的;

(2)試計算出電線桿的高度,并寫出計算的過程.

【答案】(1) 平行;(2)電線桿的高度為7米.

【解析】試題分析:(1)有太陽光是平行光線可得利用的是平行投影;

2)連接AM、CG,過點EEN⊥AB于點N,過點GGM⊥CD于點M,

根據平行投影時同一時刻物體與他的影子成比例求出電線桿的高度.

試題解析:(1)平行;

2)連接AM、CG,過點EEN⊥AB于點N,過點GGM⊥CD于點M

BN=EF=2,GH=MD=3,EN=BF=10,DH=MG=5

所以AN=10-2=8

有平行投影可知:

解得CD=7

所以電線桿的高度為7m

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=x+4與x軸、y軸分別交于點A和點B,點C、D分別為線段AB、OB的中點,點POA上一動點,當PC+PD最小時,點P的坐標為(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將矩形紙片ABCD按如圖所示的方式折疊,AE、EF為折痕,∠BAE30°,BE1,折疊后,點C落在AD邊上的C1處,并且點B落在EC1邊上的B1處.則EC的長為(  )

A. B. 2 C. 3 D. 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校獎勵學生,初一獲獎學生中,有一人獲獎品3件,其余每人獲獎品7件;初二獲獎學生中,有一人獲獎品4件,其余每人獲獎品9件.如果兩個年級獲獎人數(shù)不等,但獎品數(shù)目相等,且每個年級獎品數(shù)大于50而不超過100,那么兩個年級獲獎學生共有_____人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】7分)如圖,平行四邊形ABCD中,AB=3cm,BC=5cm∠B=60°,GCD的中點,E是邊AD上的動點,EG的延長線與BC的延長線交于點F,連接CE,DF

1)求證:四邊形CEDF是平行四邊形;

2AE= cm時,四邊形CEDF是矩形;

AE= cm時,四邊形CEDF是菱形;(直接寫出答案,不需要說明理由)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把長方形紙片ABCD沿EF折疊后.點D與點B重合,點C落在點C′的位置上.若∠1=60°,AE=1

1)求∠2、∠3的度數(shù);

2)求長方形紙片ABCD的面積S

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠B=90°,BC=,∠C=30°.點D從點C出發(fā)沿CA方向以每秒2個單位長的速度向A點勻速運動,同時點E從點A出發(fā)沿AB方向以每秒1個單位長的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設點D、E運動的時間是t秒(t0).過點DDFBC于點F,連接DE、EF

1AC的長是  ,AB的長是  

2)在D、E的運動過程中,線段EFAD的關系是否發(fā)生變化?若不變化,那么線段EFAD是何關系,并給予證明;若變化,請說明理由.

3)四邊形AEFD能夠成為菱形嗎?如果能,求出相應的t值;如果不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABO中,斜邊AB=1.若OCBA,AOC=36°,則(

A.點BAO的距離為sin54°

B.點BAO的距離為tan36°

C.點AOC的距離為sin36°sin54°

D.點AOC的距離為cos36°sin54°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將直線y=3x+1向下平移1個單位長度,得到直線y=3x +m,若反比例函數(shù)的圖象與直線y=3x+m相交于點A,且點A 的縱坐標是3.

(1)mk的值;

(2) 直接寫出方程的解:

(3) 結合圖象求不等式的解集

查看答案和解析>>

同步練習冊答案