精英家教網 > 初中數學 > 題目詳情
如圖,正方形ABCD中,E與F分別是AD,BC上一點.在①AE=CF,②BE∥DF,③∠1=∠2中,請選擇其中一個條件,證明BE=DF.
(1)你選擇的條件是______(只需填寫序號).
(2)證明.

【答案】分析:本題可通過證明△ABE和△DFC全等或四邊形BFDE是個平行四邊形來得出BE=DF的結論.
如果選①,運用SAS證明兩三角形全等,BE=DF;
如果選②那么四邊形BFDE是平行四邊形,BE=DF;
如果選③,運用AAS證明兩三角形全等,BE=DF.
解答:解法一:
(1)選①;
(2)證明:∵ABCD是正方形,
∴AB=CD,∠A=∠C=90°.
又∵AE=CF,
∴△AEB≌△CFD.
∴BE=DF.

解法二:(1)選②;
(2)證明:∵ABCD是正方形,
∴AD∥BC.
又∵BE∥DF,
∴四邊形EBFD是平行四邊形.
∴BE=DF.

解法三:(1)選③;
(2)證明:∵ABCD是正方形,
∴AB=CD,∠A=∠C=90°.
又∵∠1=∠2,
∴△AEB≌△CFD.
∴BE=DF.
點評:此題考查簡單的線段相等,可以通過全等三角形來證明,判定兩個三角形全等,先根據已知條件或求證的結論確定三角形,然后再根據三角形全等的判定方法,看缺什么條件,再去證什么條件.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

19、如圖:正方形ABCD,M是線段BC上一點,且不與B、C重合,AE⊥DM于E,CF⊥DM于F.求證:AE2+CF2=AD2

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,正方形ABCD中,E點在BC上,AE平分∠BAC.若BE=
2
cm,則△AEC面積為
 
cm2

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF.下列結論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結論的個數是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數學 來源: 題型:

17、如圖,正方形ABCD的邊長為4,將一個足夠大的直角三角板的直角頂點放于點A處,該三角板的兩條直角邊與CD交于點F,與CB延長線交于點E,四邊形AECF的面積是
16

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接BE、DG.
(1)若ED:DC=1:2,EF=12,試求DG的長.
(2)觀察猜想BE與DG之間的關系,并證明你的結論.

查看答案和解析>>

同步練習冊答案