如圖,直線軸、軸分別交于、兩點(diǎn),△繞點(diǎn)順時針旋轉(zhuǎn)90后得到△,則點(diǎn)的對應(yīng)點(diǎn)坐標(biāo)為

A.(3,4)                              B.(7,4)

C.(7,3)                              D.(3,7)

 

【答案】

C

【解析】

試題分析:∵y=-+4 與x軸 y軸相交 易得A(3,0) B(0,4) ∴AO="3" BO="4" ∵△AOB繞點(diǎn)A順時針旋轉(zhuǎn)90后得到,△AOB≌△AO′B′ ∴∠O′AB′="∠OAB" 又∵∠BAB′="90" ∴∠B′AX=∠BAO”∴∠OAO′=90∴∠B′=∠B′AX ∴OA∥O′B′ ∴B′(7,3)

考點(diǎn):一次函數(shù)的知識,圖形旋轉(zhuǎn)后的性質(zhì),三角形全等及等量代換,坐標(biāo)點(diǎn)的定義。

點(diǎn)評:掌握一次函數(shù)的圖像與坐標(biāo)軸的交點(diǎn)求法,旋轉(zhuǎn)后的圖形大小形狀不變,同角的余角相等,坐標(biāo)點(diǎn)的簡單求法。有點(diǎn)難度,但不大。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(本題10分)如圖 ,直線軸的交點(diǎn)坐標(biāo)為A(0,1),與軸的交點(diǎn)坐標(biāo)為B(-3,0);P、Q分別是軸和直線AB上的一動

點(diǎn),在運(yùn)動過程中,始終保持QA=QP;△APQ沿
直線PQ翻折得到△CPQ,A點(diǎn)的對稱點(diǎn)是點(diǎn)C.
(1)求直線AB的解析式.
(2)是否存在點(diǎn)P,使得點(diǎn)C恰好落在直線AB
上?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,
請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線l與x軸、y軸的正半軸分別交于A、B兩點(diǎn),OA、OB的長分別是關(guān)于x的方程x2﹣14x+4(AB+2)=0的兩個根(OB>OA),P是直線l上A、B兩點(diǎn)之間的一動點(diǎn)(不與A、B重合),PQ∥OB交OA于點(diǎn)Q
【小題1】求tan∠BAO的值
【小題2】若SPAQ=S四邊形OQPB時,請確定點(diǎn)P在AB上的位置,并求出線段PQ的長;
【小題3】當(dāng)點(diǎn)P在線段AB上運(yùn)動時,在y軸上是否存在點(diǎn)M,使△MPQ為等腰直角三角形?若存在,請直接寫出點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆浙江臨安於潛第一初級中學(xué)九年級上期末綜合考試數(shù)學(xué)試卷(一)(帶解析) 題型:解答題

(本題12分)
如圖,直線軸、軸分別交于A、B兩點(diǎn),動點(diǎn)P從A點(diǎn)開始在線段AO上以每秒3個長度單位的速度向原點(diǎn)O運(yùn)動. 動直線EF從軸開始以每秒1個長度單位的速度向上平行移動(即EF∥軸),并且分別與軸、線段AB交于E、F點(diǎn).連結(jié)FP,設(shè)動點(diǎn)P與動直線EF同時出發(fā),運(yùn)動時間為t秒.

(1)當(dāng)t=1秒時,求梯形OPFE的面積;
(2)t為何值時,梯形OPFE的面積最大,最大面積是多少?
(3)設(shè)t的值分別取t1、t2時(t1≠t2),所對應(yīng)的三角形分別為△AF1P1和△AF2P2.試判斷這兩個三角形是否相似,請證明你的判斷.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年浙江臨安於潛第一初級中學(xué)九年級上期末綜合考試數(shù)學(xué)試卷(一)(解析版) 題型:解答題

(本題12分)

如圖,直線軸、軸分別交于A、B兩點(diǎn),動點(diǎn)P從A點(diǎn)開始在線段AO上以每秒3個長度單位的速度向原點(diǎn)O運(yùn)動. 動直線EF從軸開始以每秒1個長度單位的速度向上平行移動(即EF∥軸),并且分別與軸、線段AB交于E、F點(diǎn).連結(jié)FP,設(shè)動點(diǎn)P與動直線EF同時出發(fā),運(yùn)動時間為t秒.

(1)當(dāng)t=1秒時,求梯形OPFE的面積;

(2)t為何值時,梯形OPFE的面積最大,最大面積是多少?

(3)設(shè)t的值分別取t1、t2時(t1≠t2),所對應(yīng)的三角形分別為△AF1P1和△AF2P2.試判斷這兩個三角形是否相似,請證明你的判斷.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(福建漳州卷)數(shù)學(xué) 題型:解答題

(11·漳州)(滿分14分)如圖1,拋物線ymx2-11mx+24m (m<0) 與x軸交于B、C兩點(diǎn)(點(diǎn)B在點(diǎn)C的左側(cè)),拋物線另有一點(diǎn)A在第一象限內(nèi),且∠BAC=90°.

(1)填空:OB_   ▲   ,OC_   ▲  

(2)連接OA,將△OAC沿x軸翻折后得△ODC,當(dāng)四邊形OACD是菱形時,求此時拋物線的解析式;

(3)如圖2,設(shè)垂直于x軸的直線lxn與(2)中所求的拋物線交于點(diǎn)M,與CD交于點(diǎn)N,若直線l 沿x軸方向左右平移,且交點(diǎn)M始終位于拋物線上A、C兩點(diǎn)之間時,試探究:當(dāng)n為何值時,四邊形AMCN的面積取得最大值,并求出這個最大值.

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊答案