在平面內(nèi)有線段AB和直線l,點(diǎn)A、B到直線l的距離分別是4cm、6cm.則線段AB的中點(diǎn)C到直線l的距離是( 。
A、1或5B、3或5C、4D、5
分析:本題要分兩種情況討論:線段AB分別在直線同側(cè)和異側(cè).
同側(cè)時(shí),只需根據(jù)梯形的中位線定理進(jìn)行計(jì)算;
異側(cè)時(shí),綜合運(yùn)用梯形的中位線定理和三角形的中位線定理進(jìn)行計(jì)算.
解答:解:(1)線段AB在直線l的同側(cè):
∵AN=4,BM=6,AN∥BN∥CD,C為AB的中點(diǎn),
∴CD=
1
2
(AN+BM)=
1
2
(4+6)=5(cm);

(2)線段AB在直線l的異側(cè):
連接NB,AM.延長(zhǎng)CD交AM于E,反向延長(zhǎng)CD交BN于F.
∵CD⊥NM,C為AB的中點(diǎn),
∴EF為梯形AMBN的中位線.
∴EF=
1
2
(AN+BM)=
1
2
(4+6)=5.
在△ABN中,CF為中位線,∴CF=
1
2
AN=
1
2
×4=2.
同理,在△AMN中,DE=
1
2
AN=
1
2
×4=2.
故CD=EF-CF-ED=5-2-2=1(cm).
故選A.
精英家教網(wǎng)
點(diǎn)評(píng):本題涉及到三角形和梯形的中位線定理,在解答時(shí)要注意線段AB在直線同側(cè)和異側(cè)兩種情況討論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在平面內(nèi)有線段AB和直線l,點(diǎn)A、B到直線l的距離分別是4cm、6cm.則線段AB的中點(diǎn)C到直線l的距離
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面內(nèi)有線段AB和直線l,點(diǎn)A、B到直線l的距離分別是4cm、6cm.則線段AB的中點(diǎn)C到直線l的距離是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆江西省景德鎮(zhèn)市九年級(jí)下學(xué)期第二次質(zhì)檢數(shù)學(xué)試卷(帶解析) 題型:填空題

在平面內(nèi)有線段AB和直線l,且點(diǎn)A、B到直線l的距離分別是4㎝、6㎝,則線段AB的中點(diǎn)C到直線l的距離是    cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年江西省景德鎮(zhèn)市九年級(jí)下學(xué)期第二次質(zhì)檢數(shù)學(xué)試卷(解析版) 題型:填空題

在平面內(nèi)有線段AB和直線l,且點(diǎn)AB到直線l的距離分別是4㎝、6㎝,則線段AB的中點(diǎn)C到直線l的距離是    cm.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案